最短路&差分约束题集

最短路

【HDU】

1548    A strange lift 基础最短路(或bfs)★
2544    最短路    基础最短路★
3790   最短路径问题 基础最短路★
2066    一个人的旅行 基础最短路(多源多汇,可以建立超级源点和终点)★
2112    HDU Today 基础最短路★
1874    畅通工程续 基础最短路★
1217    Arbitrage    货币交换 Floyd (或者 Bellman-Ford 判环)★
1245    Saving James Bond 计算几何+最短路★
1317    XYZZY   Bellman-Ford判环,有负权★
1535    Invitation Cards    有向图的来回最短路,(反向建图)★
1546    Idiomatic Phrases Game   最短路★
2680    Choose the best route    最短路★
2923    Einbahnstrasse 最短路★
3339    In Action   最短路+背包★
2224    The shortest path 双调旅行商问题★★
2807    The Shortest Path 矩阵运算+最短路(floyd)★★
1595    find the longest of the shortest 枚举+最短路(删掉任意一条边的最长最短路)★★
3986    Harry Potter and the Final Battle  枚举+最短路(删掉任意一条边的最长最短路)★★
1599    find the mincost route floyd求最小环★

1839 Delay Constrained... 二分下限+最短路(带限制最短路)★★

3631  Shortest Path Floyd插点法★★

4114 Disney's FastPass 最短路+二维状压DP(难)★★★

3832    Earth Hour 三点连通(斯坦纳树)★

3873    Invade the Mars Dij变体(好题!,带限制最短路)★★★

4063  Aircraft 几何构图+最短路★★★★

hdu4179 Difficult Routes dis[][]开二维状态的最短路(带限制最短路)★★

2145 zz's Mysterious Present 反向建边. 最短路

3268 最短路
3143   最短路
1869  六度分离 Floyd最短路★
1385    Minimum Transport Cost 最短路+输出路径(输出字典序最小路径,有点恶心)★★
1224    free DIY Tour 最短路+输出路径★
1142    A Walk Through the Forest   最短路+记忆搜索★★
1596    find the safest road    乘积最小的最短路★
1598    find the most comfortable road 二分速度差+最短路(带限制最短路)★★
2722    Here We Go(relians) Again 最短路★
2962    Trucking 二分+最短路(带限制最短路)★★
1690    Bus System  最短路★
2433    Travel   删边+最短路之和(预处理桥边)★★★
2363    Cycling   二分+最短路(带限制最短路)★★
2377    Bus Pass   最短路(寻找一个点的最长最短路最小)★★
2833    WuKong   最短路+记忆化搜索(求两条最短路的最多公共点)★★
1688    Sightseeing 最短次短路条数★★
3191    How Many Paths Are There   次短路条数★★
2482    Transit search 最短路★★★

3768  Shopping 最短路+dfs(或最短路+状压DP)★★

3035    War   平面图最小割(建图麻烦)★★
3870    Catch the Theves  平面图最小割(建图麻烦)★★

3860 Circuit Board 平面图最小割(建图麻烦)★★

4308 Saving Princess claire_ 最短路构图

4034 Graph [Floyd应用]

4157 Slalom 计算几何+最短路

4280 Island Transport [抠图+平面图最小割]

4293 Groups [最长路]

4318 Power transmission

4360 As long as Binbin loves Sangsang

4370  0 or 1

4396 More lumber is required

=======================================================================================================
【POJ】
1062 昂贵的聘礼  竟然可以和最短路联系起来★★          解题报告

1094  Sorting It All OutFloyd 判环+拓扑排序★

1125 Stockbroker Grapevine Floyd★

1135  Domino Effect 最短路,比较有意思★★

1161  Walls 最短路(图太恶心了)★★

1502  MPI Maelstrom Floyd★

1511    Invitation Cards 来回最短路★

1556 The Doors 计算几何+最短路★★

1724  ROADS 带限制的最短路,dis[][]开二维来记录信息(或广搜)★★

1734  Sightseeing trip floyd最小环路径★

1797  Heavy Transportation 二分枚举+最短路★

1847  Tram  简单最短路★

1860 Currency Exchange 货币兑换★

1949  Chores 反向建边,求最长路★★

2139  Six Degrees of Cowvin Bacon Floyd★

2240 Arbitrage 货币兑换★

2253 Frogger 二分+最短路★

2312  坦克大战 spfa最短路本质变形-->广搜★

2387  Til the Cows Come Home 基础最短路★

2394 Checking an Alibi 最短路★

2449 Remmarguts' Date A*求第K短路★★

2457  Part Acquisition 最短路 (输出路径)★★

2472  106 miles to Chicago 乘积最短路(log一下,乘变加)★★

2502 Subway
2570  Fiber Network floyd
3013  圣诞树
3037 Skiing
3072  Robot

3114  Countries in War 强联通+最短路

3160  Father Christmas flymouse 强联通+最长路

3255  Roadblocks

3259  Wormholes (寻找负权回路)

3268  Silver Cow Party

3311  Hie with the Pie floyd+状压

3328  Cliff Climbing
3439  Server Relocation
3463  Sightseeing 次短路条数
3159

3521 Geometric Map 计算几何+最短路

3549 GSM phone 计算几何+最短路

3594  Escort of Dr. Who How

3613  Cow Relays 经过N条边的最短路 // floyd + 二分矩阵

3615  Cow Hurdles
3621  最优比率环
3635  full tank?
3660  传递闭包
3662  Telephone Lines

4046 Sightseeing


【SGU314】一道神级求前k短路。。。

============================================================================================

差分约束

【HDU】
1384 Intervals 基础差分约束★
1529 Cashier Employment 神级差分约束★★★★

1531 King 差分约束★
1534 Schedule Problem 差分约束输出一组解★
3440 House Man 比较好的差分约束★★
3592 World Exhibition 简单★
3666 THE MATRIX PROBLEM 中等★★
4274 Spy's Work [先处理出欧拉序列,然后就是差分约束了...]

【POJ】
1201 Intervals
1275 Cashier Employment
1364 King
1716 Integer Intervals
2949 Word Rings
2983 Is the Information Reliable?
3159
3169
3687


### 差分约束系统求解短路径问 差分约束系统是一种特殊的线性规划问,可以通过将其转换为图论中的单源短路径问来高效求解。以下是具体的实现方式: #### 转化为图模型 差分约束系统的每个变量 \( x_i \) 对应于图中的一个节点。对于每一个约束条件 \( x_j - x_i \leq b_k \),可以在图中添加一条从节点 \( i \) 到节点 \( j \) 的有向边,其权重为 \( b_k \)[^2]。 为了确保所有节点都能被访问到,通常引入一个新的超级源点 \( s \),并从 \( s \) 向所有其他节点连一条权重为 0 的边[^3]。 #### 使用 Bellman-Ford 或 SPFA 算法 一旦构建好上述图结构,就可以通过运行 Bellman-Ford 算法或更高效的 SPFA 算法来计算从超级源点 \( s \) 出发到达各节点的短路径距离。这些距离值实际上对应着满足差分约束的一组可行解。 如果在执行过程中检测到了负权回路,则说明该差分约束系统无解;否则,得到的距离数组即为所需的结果[^5]。 下面是一个基于 Python 的简单实现示例: ```python from collections import deque, defaultdict def spfa(graph, n): dist = [float('inf')] * (n + 1) in_queue = [False] * (n + 1) queue = deque() # 初始化起点 queue.append(0) dist[0] = 0 in_queue[0] = True while queue: u = queue.popleft() in_queue[u] = False for v, w in graph[u]: if dist[v] > dist[u] + w: dist[v] = dist[u] + w if not in_queue[v]: queue.append(v) in_queue[v] = True return dist # 构建图的例子 n = 5 # 假设有5个变量加上虚拟起点共6个节点 graph = defaultdict(list) # 添加一些约束条件作为边 constraints = [ (1, 2, 3), # 表示x2 - x1 <= 3 (2, 3, 1), # 表示x3 - x2 <= 1 (3, 4, 2), # 表示x4 - x3 <= 2 ] for a, b, c in constraints: graph[a].append((b, c)) # 加入虚拟起点指向各个实际点的零权边 for node in range(1, n+1): graph[0].append((node, 0)) distances = spfa(graph, n) print(distances[1:]) # 输出除虚拟起点外的实际变量解 ``` 以上代码展示了如何利用 SPFA 来解决由若干差分不等式构成的约束系统,并获得相应的短路径解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值