周志华 《机器学习》之 第14、15、16章 概念总结

原创 2016年08月31日 13:58:21

14章:概率图模型

参阅:http://www.cnblogs.com/ironstark/p/5229085.html

15章:规则学习

参阅:http://blog.csdn.net/pallypally/article/details/8032158

16章:强化学习

参阅:http://my.oschina.net/stone8oy/blog/270349

总结:
至此就将周老师的机器学习这本书采用走马观花式的方式看了一遍,大部分理论都看明白了,不过书中还有很多数学推导感觉没有那么耐心看了。应该也能说个一二。后续将加强对这些理论的应用,将结合《机器学习与实战》这本书进行实际理论的理解。将在后续的文章中更加注重实际代码理解。

【机器学习】强化学习总结

【机器学习】强化学习总结

周志华 《机器学习》之 第四章(决策树)概念总结

看完周老师的决策树章节,首先从内容安排上采用了循序渐进的方式引入介绍决策树这种分类算法。书中从基本流程、划分选择、剪枝处理、连续与缺失值、多变量决策树五个方面进行详细介绍。看完之后我们如何理解决策树呢...

周志华 《机器学习》之 第七章(贝叶斯分类器)概念总结

贝叶斯分类器是利用概率的知识完成数据的分类任务,在机器学习中使用贝叶斯决策论实施决策的基本方法也是在概率的框架下进行的,它是考虑如何基于这些概率和误判损失来选择最优的类别标记。 贝叶斯决策论 ...

周志华 《机器学习》之 第十章(降维与度量学习)概念总结

降维在一起图像识别过程也经常被采用的一种分类算法,例如二维数据经过投影变为一维数据,从而更好的表征数据的特征,再进行识别。在前面章节中提到过LDA(线性判别分析)也可以当做一种简单降维处理。在周老师的...

周志华 《机器学习》之 第三章(线性模型)概念总结

阅读之后,根据周志华老师对本章节的安排,首先从线性模型的基本形式入手,逐渐引入线性回归、对数几率回归、线性判别分析(LDA)、多分类学习等多种线性模型,最后针对类别不平衡问题总结了一些相关的解决思路 ...

周志华 《机器学习》之 第五章(神经网络)概念总结

记得在读研期间认真学习过神经网络这门课程,当时老师讲得也挺细的,自己当时觉得理论也学得还不错,在结课的时候记得用BP神经网络C++实现过一个简单的验证码识别程序,所以对BP神经网络理解还是有一定记忆的...

周志华 《机器学习》之 第十一章(特征选择与稀疏学习)概念总结

在做图像识别的程序中,我们经常遇到特征这个词语,也常有特征提取作为识别的前序工作,通常我们可以根据提取到的特征,根据应有特征进行对比,最终完成对物体缺陷等的识别。那么在提取到的众多特征中,如何有效的提...

周志华 《机器学习》之 第十三章(半监督学习)概念总结

在前面章节中接触到的大部分都是监督学习方法以及无监督学习方法(聚类),这章讲述的半监督学习,我个人理解,应该是存在一部分标记样本,但是又不足以训练出一个良好性能的学习器,因此采用将其它未标记样本加入其...

读机器学习(周志华)笔记第五章

  • 2017年12月11日 16:58
  • 2.12MB
  • 下载

读机器学习(周志华)笔记

  • 2017年11月19日 16:52
  • 3.37MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:周志华 《机器学习》之 第14、15、16章 概念总结
举报原因:
原因补充:

(最多只允许输入30个字)