poj 2478 欧拉函数

原创 2015年11月19日 19:34:07


Farey Sequence
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13845   Accepted: 5475

Description

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9


题意:求1-n中与n互质的数的个数。

分析:欧拉函数就是这样定义的。


#include<bitset>
#include<map>
#include<vector>
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<stack>
#include<queue>
#include<set>
#define inf 0x3f3f3f3f
#define mem(a,x) memset(a,x,sizeof(a))

using namespace std;

typedef long long ll;
typedef pair<int,int> pii;

inline int in()
{
    int res=0;char c;
    while((c=getchar())<'0' || c>'9');
    while(c>='0' && c<='9')res=res*10+c-'0',c=getchar();
    return res;
}
const int N=1000100;
ll ans[N];
int cnt[N];
int gcd(int a,int b)
{
    return b==0? a : gcd(b,a%b);
}
int main()
{
    int n;
    for(int i=2;i<N;i++) cnt[i]=i;
    for(int i=2;i<N;i++)
    {
        if(cnt[i]==i)
        {
            for(int j=i;j<N;j+=i)
            {
                cnt[j]=cnt[j]/i*(i-1);
            }
        }
    }
    for(int i=2;i<N;i++)
    {
        ans[i]=ans[i-1]+cnt[i];
    }
    while(~scanf("%d",&n) && n)
    {
        printf("%I64d\n",ans[n]);
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 2478 Farey Sequence 欧拉函数

POJ 2478 Farey Sequence 欧拉函数 变形

POJ2478(典型的欧拉函数)

题意:就是求出分数a/b ,其中数1 殴拉函数:就是求小于n的所有整数a,并且gcd (a,n) = 1(1 它有一个公式及一些定理: 如果n是素数,那么殴拉函数f(n) = n-1. f (n^k...

poj2478 Farey Sequence(法雷级数+欧拉函数式素数筛)

http://poj.org/problem?id=2478 题意:求第n项的法雷级数是多少。 思路:法雷级数,百度百科就可以知道后一项和前一项的差值就是与该数互质的数的个数,因为如果...

poj 2478 Farey Sequence(基于素数筛法求欧拉函数)

http://poj.org/problem?id=2478 求欧拉函数的模板。 初涉欧拉函数,先学一学它基本的性质。 1.欧拉函数是求小于n且和n互质(包括1)的正整数的个数。记为φ(...

[poj2478]Farey Sequence(筛法求欧拉函数)

Farey SequenceTime Limit: 1000MS Memory Limit: 65536K Total Submissions: 16106 Accepted:...

poj 2478 Farey Sequence(欧拉函数)

Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13204   Accepted: ...

poj 2478【线性筛素数+欧拉函数】

由于2设a为N的质因数,若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;若(N % a == 0 && (N / a) % a != 0) ...

POJ2478 Farey Sequence(欧拉函数,打表)

Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13435   Accepted: ...

poj 3090 && poj 2478(法雷级数,欧拉函数)

http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式很简单:f[1] = 2; f[i] = f[i-1]+phi[i]。 该题是法雷级数的变形吧,答案...

欧拉函数:poj 2407, poj 1284,poj 2478,poj 3090,poj 3696,poj 3358

定义:欧拉函数         定理:求解欧拉函数的值可用如下定理实现(通过n的素因子分解)          算法实现: (一)直接实现:直接套用定理求解欧拉函数值 {CSDN:CODE:5927...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)