互信息(Mutual Information)的介绍

互信息(MI)是衡量两个变量X和Y之间关系强度的度量。当X与Y独立时,MI为0;相关性越强,MI越大。MI的公式I(X,Y)=H(Y)−H(Y|X)揭示了X如何减少Y的不确定性。应用包括文本摘要、特征提取和情感分析。在实际应用中,考虑词频的影响,MI常与tf-idf结合使用。" 107660349,9347431,Linux IO优化:云计算中的磁盘与网络IO管理,"['Linux', '云计算', '系统优化', 'IO管理', '性能调优']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

互信息,Mutual Information,缩写为MI,表示两个变量X与Y是否有关系,以及关系的强弱。

公式

我们定义互信息的公式为:

I(X,Y)=XYP(X,Y)logP(X,Y)P(X)P(Y)

可以看出,如果X与Y独立,则P(X,Y)=P(X)P(Y),I(X,Y)就为0,即代表X与Y不相关

解析公式

I(X;Y)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值