poj 2411 Mondriaan's Dream (状态压缩dp)

题意:给一个n*m(1<=n,m<=11)的棋盘,用1*2的木块往上放,要放满整个棋盘,求一共有多少种放法。

思路:状态压缩dp。1表示放,0表示不放。第i行状态只与第i-1行有关,因此用dp[i][state]表示第i行状态为state的放法总数。直接枚举每一行的放法和对下一行的影响,最后dp[n+1][0]就是答案。(想想是不是)注意要用long long。

AC代码:

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
#include<queue>
#include<vector>
#include<map>
#include<set>
using namespace std;
const int mo=1e9+7;
const int mx=1<<11;
const int inf=0x3f3f3f3f;
int n,m,ans,k,T,i;
long long dp[15][mx];
void dfs(int j,int now,int nex)
{
    if(j==m){
    dp[i+1][nex]+=dp[i][now];
    return ;
    }
    if(now&1<<j) dfs(j+1,now,nex);//这一格已经放了木块,跳过
    if(!(now&1<<j)) dfs(j+1,now,nex|1<<j);//这一格没放,放一个1*2的
    if((j+1<m)&&!(now&1<<j)&&!(now&1<<(j+1))) dfs(j+2,now,nex);//这一格和下一格都没放,放一个2*1的
}
int main() {
    int t,j,k,l,q,x,y,ss,h;
    int cas=1,flag,f1;
     while(scanf("%d%d",&n,&m)&&(m||n))
    {
        //getchar();
        if((m*n)&1) puts("0");//m*n为奇数时是放不满的,想想是不是
        else {
        memset(dp,0,sizeof(dp));
        ans=0;
        dp[1][0]=1;
        for(i=1;i<=n;i++) {
        for(int j=0;j<1<<m;j++)
        {
          if (dp[i][j]) dfs(0,j,0);//我这里是枚举每一行的状态,枚举每一列也可以,因为这里n,m都比较小
         }
        }
       printf("%lld\n",dp[n+1][0]);
    }
    }
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值