机器学习(一)线性回归、逻辑回归

看了ng的视频、机器学习实战和几篇博客,把逻辑回归彻底弄明白了,现在总结一下吧。

一、线性回归

线性回归无非就是训练得到线性函数的参数来回归出一个线性模型,学习《最优化方法》时中的最小二乘问题就是线性回归的问题。

关于线性回归,ng老师的视频里有讲,也可以看此博客单参数线性回归。简要说一下线性回归的原理。

假设拟合直线为h(x)=θ0+θ1*x, 记Cost Function为J(θ0,θ1)

这其实就是一个线性回归问题,上式也是一个最小二乘问题的模型。盗的图,我认为式中1/m完全没必要,还增加运算,完全可以删掉。线性回归就是要用数据训练出来参数θ,训练时要使目标函数最小,其中x(i)和y(i)中的i表示第i条样本数据,这就是一个无约束优化的问题,关于无约束优化问题的解决方法有很多,比如梯度下降,共轭梯度、牛顿法、步长加速法等等。关于无约束优化和最小二乘问题可以看《最优化方法》相关的书,都有很详细的讲解。这里用最简单的梯度下降。

需要朝着目标函数J梯度下降的方向迭代更行参数θ,


由此



以上就是线性回归了。

二、逻辑回归

线性回归能到一个模型来进行预测,要想用来分类,就要用到逻辑回归。

要分类,就要把h(x)的结果限制在0~1范围内,引入sigmoid函数


假设我们的样本是{x, y},y是0或者1,表示正类或者负类,x是我们的m维的样本特征向量。那么这个样本x属于正类,也就是y=1的“概率”可以通过下面的逻辑函数来表示:


所以说,LogisticRegression 就是一个被logistic方程归一化后的线性回归,仅此而已。

怎么来构造代价函数,就用到最大似然,关于最大似然估计,本科概率论有相关知识。

假设我们有n个独立的训练样本{(x1, y1) ,(x2, y2),…, (xn, yn)},y={0, 1}。那每一个观察到的样本(xi, yi)出现的概率是:

那最大似然法就是求模型中使得似然函数最大的系数取值θ*。这个最大似然就是我们的代价函数(cost function)了。


这时候,用L(θ)对θ求导,得到:

下一步要做的就是优化求解了。所以以上都只是推导过程, 真正用到的就是这个式子

三、优化

这一块可以看这篇博客逻辑回归,讲的很细。其实该篇博客主要内容来自《机器学习实战》

注意梯度下降和随机梯度下降的区别。梯度下降每一次迭代都要把整个数据来求导,随即梯度下降则是每一次迭代只用一个样本数据,梯度下降适合小数据,随即梯度下降适合大数据集。

四、总结

所以其实逻辑回归实现时真正用到的就是


每一次对上式迭代

关于matlab代码,上面博客作者的博客里有相关代码,但她是调用了无约束优化的相关函数,所以实现很简单,另外关于正则化的实现我认为她代码不对

上面的博客里有python的代码,《机器学习实战》也有。

#################################################
# logRegression: Logistic Regression
# Author : zouxy
# Date   : 2014-03-02
# HomePage : http://blog.csdn.net/zouxy09
# Email  : zouxy09@qq.com
#################################################

from numpy import *
import matplotlib.pyplot as plt
import time


# calculate the sigmoid function
def sigmoid(inX):
	return 1.0 / (1 + exp(-inX))


# train a logistic regression model using some optional optimize algorithm
# input: train_x is a mat datatype, each row stands for one sample
#		 train_y is mat datatype too, each row is the corresponding label
#		 opts is optimize option include step and maximum number of iterations
def trainLogRegres(train_x, train_y, opts):
	# calculate training time
	startTime = time.time()

	numSamples, numFeatures = shape(train_x)
	alpha = opts['alpha']; maxIter = opts['maxIter']
	weights = ones((numFeatures, 1))

	# optimize through gradient descent algorilthm
	for k in range(maxIter):
		if opts['optimizeType'] == 'gradDescent': # gradient descent algorilthm
			output = sigmoid(train_x * weights)
			error = train_y - output
			weights = weights + alpha * train_x.transpose() * error
		elif opts['optimizeType'] == 'stocGradDescent': # stochastic gradient descent#对于大数据集就不要让随即梯度下降在k循环下循环了,
			for i in range(numSamples):
				output = sigmoid(train_x[i, :] * weights)
				error = train_y[i, 0] - output
				weights = weights + alpha * train_x[i, :].transpose() * error
		elif opts['optimizeType'] == 'smoothStocGradDescent': # smooth stochastic gradient descent
			# randomly select samples to optimize for reducing cycle fluctuations 
			dataIndex = range(numSamples)
			for i in range(numSamples):
				alpha = 4.0 / (1.0 + k + i) + 0.01
				randIndex = int(random.uniform(0, len(dataIndex)))
				output = sigmoid(train_x[randIndex, :] * weights)
				error = train_y[randIndex, 0] - output
				weights = weights + alpha * train_x[randIndex, :].transpose() * error
				del(dataIndex[randIndex]) # during one interation, delete the optimized sample
		else:
			raise NameError('Not support optimize method type!')
	

	print 'Congratulations, training complete! Took %fs!' % (time.time() - startTime)
	return weights


# test your trained Logistic Regression model given test set
def testLogRegres(weights, test_x, test_y):
	numSamples, numFeatures = shape(test_x)
	matchCount = 0
	for i in xrange(numSamples):
		predict = sigmoid(test_x[i, :] * weights)[0, 0] > 0.5
		if predict == bool(test_y[i, 0]):
			matchCount += 1
	accuracy = float(matchCount) / numSamples
	return accuracy


# show your trained logistic regression model only available with 2-D data
def showLogRegres(weights, train_x, train_y):
	# notice: train_x and train_y is mat datatype
	numSamples, numFeatures = shape(train_x)
	if numFeatures != 3:
		print "Sorry! I can not draw because the dimension of your data is not 2!"
		return 1

	# draw all samples
	for i in xrange(numSamples):
		if int(train_y[i, 0]) == 0:
			plt.plot(train_x[i, 1], train_x[i, 2], 'or')
		elif int(train_y[i, 0]) == 1:
			plt.plot(train_x[i, 1], train_x[i, 2], 'ob')

	# draw the classify line
	min_x = min(train_x[:, 1])[0, 0]
	max_x = max(train_x[:, 1])[0, 0]
	weights = weights.getA()  # convert mat to array
	y_min_x = float(-weights[0] - weights[1] * min_x) / weights[2]
	y_max_x = float(-weights[0] - weights[1] * max_x) / weights[2]
	plt.plot([min_x, max_x], [y_min_x, y_max_x], '-g')
	plt.xlabel('X1'); plt.ylabel('X2')
	plt.show()



#################################################
# logRegression: Logistic Regression
# Author : zouxy
# Date   : 2014-03-02
# HomePage : http://blog.csdn.net/zouxy09
# Email  : zouxy09@qq.com
#################################################

from numpy import *
import matplotlib.pyplot as plt
import time
from logregression import trainLogRegres,testLogRegres,showLogRegres
def loadData():
	train_x = []
	train_y = []
	fileIn = open('E:/Python/Machine Learning in Action/testSet.txt')
	for line in fileIn.readlines():
		lineArr = line.strip().split()
		train_x.append([1.0, float(lineArr[0]), float(lineArr[1])])#追加内容
		train_y.append(float(lineArr[2]))
	return mat(train_x), mat(train_y).transpose()


## step 1: load data
print "step 1: load data..."
train_x, train_y = loadData()
test_x = train_x; test_y = train_y

## step 2: training...
print "step 2: training..."
opts = {'alpha': 0.01, 'maxIter': 20, 'optimizeType': 'smoothStocGradDescent'}#字典
optimalWeights = trainLogRegres(train_x, train_y, opts)

## step 3: testing
print "step 3: testing..."#新版本要加括号
accuracy = testLogRegres(optimalWeights, test_x, test_y)

## step 4: show the result
print "step 4: show the result..."	
print 'The classify accuracy is: %.3f%%' % (accuracy * 100)
showLogRegres(optimalWeights, train_x, train_y) 

数据集

-0.017612	14.053064	0
-1.395634	4.662541	1
-0.752157	6.538620	0
-1.322371	7.152853	0
0.423363	11.054677	0
0.406704	7.067335	1
0.667394	12.741452	0
-2.460150	6.866805	1
0.569411	9.548755	0
-0.026632	10.427743	0
0.850433	6.920334	1
1.347183	13.175500	0
1.176813	3.167020	1
-1.781871	9.097953	0
-0.566606	5.749003	1
0.931635	1.589505	1
-0.024205	6.151823	1
-0.036453	2.690988	1
-0.196949	0.444165	1
1.014459	5.754399	1
1.985298	3.230619	1
-1.693453	-0.557540	1
-0.576525	11.778922	0
-0.346811	-1.678730	1
-2.124484	2.672471	1
1.217916	9.597015	0
-0.733928	9.098687	0
-3.642001	-1.618087	1
0.315985	3.523953	1
1.416614	9.619232	0
-0.386323	3.989286	1
0.556921	8.294984	1
1.224863	11.587360	0
-1.347803	-2.406051	1
1.196604	4.951851	1
0.275221	9.543647	0
0.470575	9.332488	0
-1.889567	9.542662	0
-1.527893	12.150579	0
-1.185247	11.309318	0
-0.445678	3.297303	1
1.042222	6.105155	1
-0.618787	10.320986	0
1.152083	0.548467	1
0.828534	2.676045	1
-1.237728	10.549033	0
-0.683565	-2.166125	1
0.229456	5.921938	1
-0.959885	11.555336	0
0.492911	10.993324	0
0.184992	8.721488	0
-0.355715	10.325976	0
-0.397822	8.058397	0
0.824839	13.730343	0
1.507278	5.027866	1
0.099671	6.835839	1
-0.344008	10.717485	0
1.785928	7.718645	1
-0.918801	11.560217	0
-0.364009	4.747300	1
-0.841722	4.119083	1
0.490426	1.960539	1
-0.007194	9.075792	0
0.356107	12.447863	0
0.342578	12.281162	0
-0.810823	-1.466018	1
2.530777	6.476801	1
1.296683	11.607559	0
0.475487	12.040035	0
-0.783277	11.009725	0
0.074798	11.023650	0
-1.337472	0.468339	1
-0.102781	13.763651	0
-0.147324	2.874846	1
0.518389	9.887035	0
1.015399	7.571882	0
-1.658086	-0.027255	1
1.319944	2.171228	1
2.056216	5.019981	1
-0.851633	4.375691	1
-1.510047	6.061992	0
-1.076637	-3.181888	1
1.821096	10.283990	0
3.010150	8.401766	1
-1.099458	1.688274	1
-0.834872	-1.733869	1
-0.846637	3.849075	1
1.400102	12.628781	0
1.752842	5.468166	1
0.078557	0.059736	1
0.089392	-0.715300	1
1.825662	12.693808	0
0.197445	9.744638	0
0.126117	0.922311	1
-0.679797	1.220530	1
0.677983	2.556666	1
0.761349	10.693862	0
-2.168791	0.143632	1
1.388610	9.341997	0
0.317029	14.739025	0

五、在分布式系统中实现

关于lr在maprudece中的实现,logistic regression不支持并行,也就是mahout实现的也是单机的,运行在hadoop上面也没有意义(个人观点)。

看mahout中的源码分析:mahout源码分析之logistic regression(2)--RunLogistic

参考文献:

[1].  Ng机器学习视频

[2]. 机器学习实战

[3]. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

[4]. 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值