自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(338)
  • 收藏
  • 关注

原创 【自然语言处理与大模型】LlamaIndex的词嵌入模型和向量数据库

嵌入模型(Embedding Model)的本质在于将高维的、稀疏的数据转换为低维的、密集的向量表示,使得这些向量能够在数学空间中表达原始数据的语义信息。降维表示:嵌入模型能够将文本、图像或其它类型的数据映射到一个连续的向量空间中,这个过程通常伴随着维度的降低。例如,一个包含大量词汇的文本可以通过嵌入模型被表示为固定长度的向量。捕捉语义关系:在生成的向量空间中,相似或相关的概念在空间中的距离较近,而不相关或相异的概念则距离较远。这意味着嵌入模型不仅能捕捉单个词语或数据点的含义,还能反映它们之间的语义关系。

2025-05-06 23:57:16 318

原创 【学习心得】PyCharm远程连接OpenBayes贝式算力云平台

本文详细记录一下如何使用PyCharm远程连接OpenBayes贝式算力云平台,并使用安装llamafactory

2025-05-06 04:23:09 154

原创 【学习心得】好用算力平台推荐OpenBayes“贝式计算”

好用算力平台推荐OpenBayes“贝式计算”

2025-05-06 01:55:23 277

原创 【自然语言处理与大模型】LlamaIndex的数据连接器和对话引擎

RAG的通用流程?LlamaIndex如何实现RAG?

2025-05-05 23:59:54 298 2

原创 【学习心得】Xtuner模型qlora微调时错误记录

记录使用Xtuner来微调模型的时候踩的坑

2025-05-05 10:37:24 315

原创 【自然语言处理与大模型】使用Xtuner进行模型合并与导出

轻松地将在 Xtuner 中训练得到的模型转换为可以在 Hugging Face 平台上使用的格式,方便后续的应用

2025-05-03 23:57:47 486

原创 【学习心得】魔塔(ModelScope)和抱抱脸(Hugging Face)下载模型小细节

介绍常用的两种在模型社区如魔塔(ModelScope)和抱抱脸(Hugging Face),下载预训练模型的方法,然后说明各种方法里面的小细节。

2025-05-03 11:56:50 614

原创 【自然语言处理与大模型】使用Xtuner进行QLoRA微调实操

手把手演示如何使用Xtuner对模型进行微调训练,包括数据准备、训练命令执行及训练过程中的监控技巧。最后,在完成微调之后,本文还将介绍如何对微调结果进行简单对话测试。

2025-05-02 23:57:50 1323 2

原创 【学习心得】MongoDB报错“Error: couldn‘t connect to server 127.0.0.1:27017, connection attempt failed: ...”

MongoDB报错“Error: couldn't connect to server 127.0.0.1:27017, connection attempt failed: ...”

2025-05-02 14:36:18 266 1

原创 【自然语言处理与大模型】如何获取特定领域的微调数据集?

在少量原始对话样本的基础上,通过调用大模型 API(如 GLM 系列) 自动生成大量风格一致、语义合理的对话数据,用于扩充训练集或提升下游任务表现。

2025-04-30 23:58:29 492

原创 【自然语言处理与大模型】大模型意图识别实操

本文先介绍一下大模型意图识别是什么?如何实现?然后通过一个具体的实战案例,详细演示如何运用大模型完成意图识别任务。最后,对大模型在该任务中所发挥的核心作用进行总结归纳。

2025-04-30 15:19:05 1566

原创 【自然语言处理与大模型】LangChain大模型应用框架入门②

本文介绍LangChain的另一个重要组件——提示词模板(Prompt Template)组件,其中的两个最常用的PromptTemplate和ChatPromptTemplate

2025-04-29 23:48:58 561

原创 【自然语言处理与大模型】LangChain大模型应用框架入门①

文章介绍LangChain的安装,学习模型组件的使用。

2025-04-29 23:29:51 1024

原创 【自然语言处理与大模型】用OpenCompass评估自己微调的模型

用OpenCompass评估自己微调的模型。OpenCompass评估入门有哪些坑。

2025-04-27 05:20:18 1158 1

原创 【学习心得】最新!使用PyCharm 2025.1 远程开发教程,附带端口转发教程!

最新!使用PyCharm 2025.1 远程开发教程,附带端口转发教程!

2025-04-27 00:43:37 396

原创 【自然语言处理与大模型】vLLM部署本地大模型②

vLLM部署本地大模型的常用功能:分布式部署和在线量化推理

2025-04-26 03:43:49 1271

原创 【自然语言处理与大模型】使用LMDeploy来进行大模型的高效推理

使用LMDeploy来进行大模型的基础推理、在线量化推理、分布式推理。

2025-04-26 01:57:56 817

原创 【自然语言处理与大模型】离线环境的单机多卡分布式微调或推理存在的问题

服务器上没有网会对LLaMA-Factory的分布式训练产生什么影响?

2025-04-25 04:05:35 456

原创 【自然语言处理与大模型】大模型参数规模与部署配置调查2025第一季度

大模型参数规模与部署配置调查2025第一季度。统计可知参数规模在32B到78B之间的模型是目前的主流。

2025-04-23 23:08:43 668

原创 【自然语言处理与大模型】如何知道自己部署的模型的最大并行访问数呢?

如何知道自己部署的模型的最大并行访问数呢?预估模型推理时显存占用,计算剩余显存量支持的最大并行访问数。

2025-04-22 11:26:59 1322

原创 【自然语言处理与大模型】模型压缩技术之蒸馏

这些知识从哪里来?蒸馏温度T是什么?知识蒸馏的基本框架。离线知识蒸馏方法。

2025-04-21 22:48:21 1042

原创 【自然语言处理与大模型】模型压缩技术之剪枝

什么是模型剪枝?有哪些剪枝方式?量化和剪枝的区别是什么?

2025-04-21 18:58:23 1072

原创 【自然语言处理与大模型】模型压缩技术之量化

什么是量化?为什么要量化?以及如何实现量化?

2025-04-21 17:35:24 830

原创 【自然语言处理与大模型】大模型(LLM)基础知识③

大模型的“7B”是什么意思?模型后面标的“instruct”是什么意思?大模型量化什么意思?量化等级是什么意思?量化方法是什么意思?啥是Alpaca数据集?BLEU评估指标是什么?怎么算的?ROUGE评估指标是什么?怎么算的?什么是QLoRA?为什么要做分布式微调训练?怎么实现大模型的分布式微调的?原理策略?

2025-04-21 02:06:09 572

原创 【自然语言处理与大模型】个人使用LLaMA Factory微调的记录

个人使用LLaMA Factory微调的记录:魔塔社区免费服务器如何使用webui微调?llamafactory工程文件目录里面都有是些什么?webui里面的微调参数的都是什么意思? 如何直接使用webchat来和指定模型对话?五、使用cli train进行黑窗口微调训练的时候如何配置训练参数?

2025-04-21 01:51:26 1049

原创 【自然语言处理与大模型】Linux环境下Ollama下载太慢了该怎么处理?

Linux环境下Ollama下载太慢了该怎么处理?答案是在下载配置文件中更换下载源。

2025-04-20 23:18:57 227

原创 【学习心得】让公司或学校的服务器也能像AutoDL等算力平台一样使用jupyter lab访问

让公司或学校的服务器也能像AutoDL等算力平台一样使用jupyter lab访问,这个过程涉及到几个关键步骤,比如安装 Jupyter、配置安全访问、开放必要的端口以及确保可以通过互联网访问等等。

2024-12-19 02:38:28 440

原创 【自然语言处理与大模型】vLLM部署本地大模型①

本文记录我个人在使用vllm部署私有大模型的时候遇到的困难和详细部署过程。

2024-12-18 23:59:36 1692

原创 【学习心得】几种特殊但非常必要学习的pip安装小知识

几种特殊但非常必要学习的pip安装小知识

2024-12-18 17:10:19 944

原创 【自然语言处理与大模型】Ollama拉取huggingface社区或modelscope社区的GGUF模型并部署

Ollama如何拉取huggingface社区或modelscope社区的GGUF模型并部署。

2024-12-17 03:46:09 1000

原创 【自然语言处理与大模型】Ollama部署本地GGUF模型

使用Ollama部署本地GGUF格式的模型。

2024-12-17 01:26:03 1553

原创 【自然语言处理与大模型】需求给定后可选模型众多,你该如何选择模型?

选择合适的模型是一个综合考量的过程,需要根据具体任务需求、硬件设备条件以及部署环境等多方面因素来决定。

2024-12-13 16:16:37 857

原创 【自然语言处理与大模型】使用llama.cpp将HF格式大模型转换为GGUF格式

llama.cpp 是一个专为大型语言模型(LLM)设计的高性能推理框架,可以使用llama.cpp将HF格式大模型转换为GGUF格式。

2024-12-13 08:48:39 1957

原创 【自然语言处理与大模型】魔塔社区免费实例中使用ollama快速部署llama3

在ModelScope魔塔社区提供的免费实例,使用ollama部署开源llama3模型。

2024-11-19 03:04:32 3914 2

原创 【自然语言处理与大模型】算力云平台上的大模型部署并实现远程调用

以AutoDL算力云平台为例,部署国产开源ChatGLM3b模型。

2024-11-17 17:42:36 1939

原创 【自然语言处理与大模型】Ollama的使用介绍

如何安装和卸载Ollama?如何使用Ollama部署大模型?如何调用API去操作大模型?

2024-11-17 03:52:16 4580

原创 【学习心得】数据分析三剑客跟学Gitee仓库

Talk is cheap, Show me the code. (纸上得来终觉浅,绝知此事要躬行)Numpy科学计算仓库介绍、Pandas数据分析仓库介绍和Matplotlib可视化仓库介绍。

2024-11-16 11:49:41 882 2

原创 【学习心得】Python好库推荐——Streamlit

Streamlit • A faster way to build and share data apps(Streamlit帮助你更快速搭建应用)

2024-11-16 00:13:59 404

原创 【学习心得】Python好库推荐——tiktoken

tiktoken是一个快速BPE分词器,它用于两个重要功能:1、文本编码与解码;2、统计Tokens数量。

2024-11-13 23:30:16 715

原创 【学习心得】Python好库推荐——PEFT

PEFT(Parameter-Efficient Fine-Tuning)是一种在深度学习中进行参数高效微调的技术。

2024-11-13 15:58:30 1338

手语识别-深度学习-自建ASL数据集-模型训练(分卷压缩第三卷/最后一卷)

内容概要: 本资源是一套自建美国手语(American Sign Language, ASL)手势数据集,通过OpenCV实现每秒30帧的高清视频录制,精准捕捉并记录了连续且细腻的手部动作变化,旨在用于深度学习算法对手势识别的研究与训练。数据集中所有图片均为720p分辨率(1280x720像素),确保了手部细节特征在图像中的高清晰度展现。为进一步提升模型的学习效果和泛化能力,我还对手语图像采用了尺度归一化,高斯滤波,肤色提取和二值,四种方式来进行数据增强。 适用人群: 此数据集适用于机器学习工程师、人工智能研究人员、计算机视觉领域的学者以及致力于开发智能手语识别系统的开发者和团队。 使用场景及目标: 该数据集适用于训练和测试深度学习模型,目标在于提高手语识别系统的识别精度和实时性能。 其他说明: 为了增强模型泛化能力和应对不同环境下的识别挑战,数据集中的手势样本在多种拍摄角度下采集,并特意设置了简洁单一的背景以减少干扰因素。每个手势类别都提供了丰富的变体,大约包含1000张不同情境下的图像,总计涵盖了约2万张手势数据图片,充分满足大规模训练和验证的需求。

2024-04-01

手语识别-深度学习-自建ASL数据集-模型训练(分卷压缩第二卷)

内容概要: 本资源是一套自建美国手语(American Sign Language, ASL)手势数据集,通过OpenCV实现每秒30帧的高清视频录制,精准捕捉并记录了连续且细腻的手部动作变化,旨在用于深度学习算法对手势识别的研究与训练。数据集中所有图片均为720p分辨率(1280x720像素),确保了手部细节特征在图像中的高清晰度展现。为进一步提升模型的学习效果和泛化能力,我还对手语图像采用了尺度归一化,高斯滤波,肤色提取和二值,四种方式来进行数据增强。 适用人群: 此数据集适用于机器学习工程师、人工智能研究人员、计算机视觉领域的学者以及致力于开发智能手语识别系统的开发者和团队。 使用场景及目标: 该数据集适用于训练和测试深度学习模型,目标在于提高手语识别系统的识别精度和实时性能。 其他说明: 为了增强模型泛化能力和应对不同环境下的识别挑战,数据集中的手势样本在多种拍摄角度下采集,并特意设置了简洁单一的背景以减少干扰因素。每个手势类别都提供了丰富的变体,大约包含1000张不同情境下的图像,总计涵盖了约2万张手势数据图片,充分满足大规模训练和验证的需求。

2024-04-01

手语识别-深度学习-自建ASL数据集-模型训练(分卷压缩第一卷)

内容概要: 本资源是一套自建美国手语(American Sign Language, ASL)手势数据集,通过OpenCV实现每秒30帧的高清视频录制,精准捕捉并记录了连续且细腻的手部动作变化,旨在用于深度学习算法对手势识别的研究与训练。数据集中所有图片均为720p分辨率(1280x720像素),确保了手部细节特征在图像中的高清晰度展现。为进一步提升模型的学习效果和泛化能力,我还对手语图像采用了尺度归一化,高斯滤波,肤色提取和二值,四种方式来进行数据增强。 适用人群: 此数据集适用于机器学习工程师、人工智能研究人员、计算机视觉领域的学者以及致力于开发智能手语识别系统的开发者和团队。 使用场景及目标: 该数据集适用于训练和测试深度学习模型,目标在于提高手语识别系统的识别精度和实时性能。 其他说明: 为了增强模型泛化能力和应对不同环境下的识别挑战,数据集中的手势样本在多种拍摄角度下采集,并特意设置了简洁单一的背景以减少干扰因素。每个手势类别都提供了丰富的变体,大约包含1000张不同情境下的图像,总计涵盖了约2万张手势数据图片,充分满足大规模训练和验证的需求。

2024-04-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除