机器学习面试题——线性回归LR与逻辑回归LR

机器学习面试题——线性回归LR与逻辑回归LR

提示:平时除了练习数据结构与算法之外,还需要学习这些机器学习知识


题目

互联网大厂经常会出这些题:
逻辑回归 LR 详细推导
回归和分类的区别
逻辑回归特征是否归一化
什么样的模型需要特征归一化
如何提升LR的模型性能?
逻辑回归为啥要做特征离散化
LR的详细过程,如何优化
lr公式推导
最小二乘法在什么条件下与极大似然估计等价?
逻辑回归为什么不用平方损失函数?
LR可以处理非线性情况吗?
LR的参数可以初始化0 吗?


逻辑回归 LR 详细推导,LR公式推导

基本条件

(1)线性回归:在这里插入图片描述
sigmoid函数:
在这里插入图片描述
(2)逻辑回归:
在这里插入图片描述
说白了就是把线性回归的结果,输入激活函数就是分类的逻辑回归了。

损失函数推导

对于分类任务:
在这里插入图片描述
最大似然函数:
在这里插入图片描述
m个类别
然后取对数:
变乘法为加法
在这里插入图片描述
求平均:
在这里插入图片描述

梯度求导

在这里插入图片描述
每次梯度下降,迭代后的参数:
在这里插入图片描述

回归和分类的区别,以及两者的优缺点

区别

也就是说输出目标不同,自然功能不一样,评价指标肯定也不一样,损失函数自然就不一样。
线性回归是回归(预测regression)【定量问题】,逻辑回归是分类(classification)【定性问题】。
线性回归,输出套上sigmoid函数就成了逻辑回归
两者的的预测目标变量类型不同,回归问题是连续变量,分类问题离散变量
回归目标是得到最优拟合;而分类目标是得到决策边界
评价指标不同:回归的评价指标通常是MSE;分类评价指标通常是Accuracy、Precision、Recall

优点

(1)模型简单,原理简单易理解
(2)计算代价不高,易于理解和实现。

缺点:

(1)容易过拟合
(2)特征很多的时候,效果不好
(3)处理线性问题效果比较好,而对于更复杂的问题可能束手无策

逻辑回归特征是否归一化

答:是需要归一化的

虽然逻辑回归本身不受量纲影响,
但是其使用梯度下降法求解参数受量纲影响大,如果不进行特征归一化,可能由于变量不同量纲导致参数迭代求解缓慢,影响算法速率。

一般算法如果本身受量纲影响较大,或者相关优化函数受量纲影响大,则需要进行特征归一化

对于决策树这类的算法,不受量纲影响,不需要进行归一化处理。

什么样的模型需要特征归一化

一般算法如果本身受量纲影响较大,或者相关优化函数受量纲影响大,则需要进行特征归一化。

如何提升LR的模型性能?如何优化LR的性能?

(1)想办法获得或构造更多的数据,无论评估模型还是训练,都会更加可靠。
(2)根据业务知识,挖掘更多有价值的Feature,即特征工程
(3)加入正则化项,L1/L2。交叉验证确定最优的参数。这会加快模型开发速度,会自动化筛选变量。

逻辑回归为啥要做特征离散化

(1)非线性:逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合; 离散特征的增加和减少都很容易,易于模型的快速迭代;
(2)速度快:稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
(3)鲁棒性:离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是“年龄>30
是1,否则0
”。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;
(4)方便交叉与特征组合:离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
(5)简化模型:特征离散化以后,起到了
简化了逻辑回归模型的作用
,降低了模型过拟合的风险。

最小二乘法在什么条件下与极大似然估计等价?

当模型估计值和真实值间的残差项服从均值是0的高斯分布时,就有最小二乘估计和最大似然估计等价。
在这里插入图片描述

逻辑回归为什么不用平方损失函数?

(1)因为平方损失函数权重更新过慢,采用交叉熵损失函数可以完美解决过慢的问题,它具有“误差大的时候,权重更新快;误差小的时候,权重更新慢”的良好性质。
(2)sigmoid作为激活函数的时候,如果采用均方误差损失函数,那么这是一个非凸优化问题,不宜求解,容易陷入局部最优解。而采用交叉熵损失函数依然是一个凸优化问题,更容易优化求解。
这点之前我可不知道……

LR可以处理非线性情况吗?

可以,同样可以使用核方法

LR的参数可以初始化0 吗?

答:可以
在这里插入图片描述在这里插入图片描述


总结

提示:重要经验:

1)这些八股文,得没事就来看看,操笔画一画练一下
2)有个初步印象

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰露可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值