ACM-巴什博弈之Brave Game——hdu1846

Brave Game

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5789    Accepted Submission(s): 3845

Problem Description
十年前读大学的时候,中国每年都要从国外引进一些电影大片,其中有一部电影就叫《勇敢者的游戏》(英文名称:Zathura),一直到现在,我依然对于电影中的部分电脑特技印象深刻。
今天,大家选择上机考试,就是一种勇敢(brave)的选择;这个短学期,我们讲的是博弈(game)专题;所以,大家现在玩的也是“勇敢者的游戏”,这也是我命名这个题目的原因。
当然,除了“勇敢”,我还希望看到“诚信”,无论考试成绩如何,希望看到的都是一个真实的结果,我也相信大家一定能做到的~

各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的:
1、  本游戏是一个二人游戏;
2、  有一堆石子一共有n个;
3、  两人轮流进行;
4、  每走一步可以取走1…m个石子;
5、  最先取光石子的一方为胜;

如果游戏的双方使用的都是最优策略,请输出哪个人能赢。
 
Input
输入数据首先包含一个正整数C(C<=100),表示有C组测试数据。
每组测试数据占一行,包含两个整数n和m(1<=n,m<=1000),n和m的含义见题目描述。
 
Output
如果先走的人能赢,请输出“first”,否则请输出“second”,每个实例的输出占一行。
 
Sample Input
  
  
2 23 2 4 3
 
Sample Output
  
  
first second
 
Author
lcy
 

一道典型的巴什 博弈。
博弈:
只有一堆共n个物品,两个人轮流从这堆物品中取物,每个人最少取1个最多取m个,最后取光着获胜。
题目解法:

在这里要声明,做博弈题目,要按照每个人都是最优的情况进行,就是怎样对自己最有利,那就怎么去做。如果不懂最优的含义,可以看前缀。

前缀:

对于这道题目,假设有3个物品,一次最多拿2个,不要想着先拿的人先拿1个,后拿的人再拿1个,先拿的人再拿1个,得出结果  先拿的人获胜。

应该这么考虑,为了让自己获胜,先拿的人要给人家剩余m+1的情况,但是每次必须拿一个,所以,没办法,只能拿一个(其实拿多少无所谓了,因为一定会输),后拿的人面对剩余的2个,为了使自己获胜,当然全拿走。

正文:

前缀说完,重回本题。如果n=m+1,因为最多取m个,所以先拿的人拿多少个,后拿的人能全拿走。

由此可以总结出 取胜秘籍: n=(m+1)*r+s   (r为任意自然数,s为小于等于m)。

那么先取者拿走s个物品,如果后取者拿走K(≤m)个,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

于是,这道题解法就出来了,只要判断  n%(m+1)是否等于等于0。

等于0代表,无论怎么取,最后都会剩下<=m个,因此后取者将会获胜。


/**************************************
***************************************
*        Author:Tree                  *
*From :http://blog.csdn.net/lttree    *
* Title : Brave Game                  *
*Source: hdu 1846                     *
* Hint  : 巴什博弈                    *
***************************************
**************************************/
#include <stdio.h>
int main()
{
    int test,m,n;
    scanf("%d",&test);
    while(test--)
    {
        scanf("%d%d",&n,&m);
        if( n%(m+1) )    printf("first\n");
        else    printf("second\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值