1050. 螺旋矩阵(25)
时间限制 150 ms
内存限制 65536 kB
代码长度限制 8000 B
判题程序 Standard
作者 CHEN, Yue
本题要求将给定的N个正整数按非递增的顺序,填入“螺旋矩阵”。所谓“螺旋矩阵”,是指从左上角第1个格子开始,按顺时针螺旋方向填充。要求矩阵的规模为m行n列,满足条件:m*n等于N;m>=n;且m-n取所有可能值中的最小值。
输入格式:
输入在第1行中给出一个正整数N,第2行给出N个待填充的正整数。所有数字不超过10^4,相邻数字以空格分隔。
输出格式:
输出螺旋矩阵。每行n个数字,共m行。相邻数字以1个空格分隔,行末不得有多余空格。
输入样例:
12
37 76 20 98 76 42 53 95 60 81 58 93
输出样例:
98 95 93
42 37 81
53 20 76
58 60 76
原题地址:https://www.patest.cn/contests/pat-b-practise/1050
思路:先计算出m和n,然后旋转填数,可以用一个数组标记已经访问过的位置,每次访问到边界或者是已经填过数的地方都换一个方向,直到所有的数被填完。
计算m、n的方法:根据题目条件我们可以知道m与n是N的隔得最近的两个因子,因此可以从sqrt(N)开始向下寻找能被N整除的值,这个就是n了
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cctype>
using namespace std;
int N;
bool compare(const int &a, const int &b)
{
return a > b;
}
void solve()
{
int A[N];
for(int i = 0; i < N; i ++){
cin >> A[i];
}
sort(A, A + N, compare);
//以sqrt(n)向下寻找最大的n
int m, n = sqrt(N);
while(N % n != 0){
n --;
}
m = N / n;
int T[m][n];
bool vis[m][n]; //vis[i][j] = true表示(i,j)已经访问过
int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}, di = 0;
for(int i = 0; i < m; i ++)
for(int j = 0; j < n; j ++){
vis[i][j] = false;
}
int i = 0, j = 0, k = 0;
do{
T[i][j] = A[k ++];
vis[i][j] = true;
int ni = i + dx[di], nj = j + dy[di];
if(ni < 0 || ni >= m || nj < 0 || nj >= n || vis[ni][nj]){
di = (di + 1) % 4;
}
i += dx[di];
j += dy[di];
}while(k < N);
for(int i = 0; i < m; i ++){
for(int j = 0; j < n; j ++){
cout << T[i][j];
if(j + 1 < n)
cout << " ";
}
cout << endl;
}
}
int main()
{
cin >> N;
solve();
return 0;
}
另外一种旋转填充矩阵的方法:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cctype>
using namespace std;
int N;
void solve()
{
int A[N];
for(int i = 0; i < N; i ++){
cin >> A[i];
}
sort(A, A + N);
int n = sqrt(N), m;
while(N % n){
n --;
}
m = N / n;
int T[m][n];
for(int side = 0, k = N - 1; side * 2 < n; side ++){
for(int j = side; j < n - side; j ++)
T[side][j] = A[k --];
for(int i = side + 1; i < m - side; i ++)
T[i][n - 1 - side] = A[k --];
for(int j = n - 2 - side; j >= side; j --)
T[m - 1 - side][j] = A[k --];
if(n - 1 - side > side) //N为素数时只有一列防止覆盖
for(int i = m - 2 - side; i >= side + 1; i --)
T[i][side] = A[k --];
}
for(int i = 0; i < m; i ++){
for(int j = 0; j < n; j ++){
cout << T[i][j];
if(j + 1 < n)
cout << " ";
}
cout << endl;
}
}
int main()
{
cin >> N;
solve();
return 0;
}