1050. 螺旋矩阵(25)

1050. 螺旋矩阵(25)

时间限制 150 ms
内存限制 65536 kB
代码长度限制 8000 B
判题程序 Standard
作者 CHEN, Yue

本题要求将给定的N个正整数按非递增的顺序,填入“螺旋矩阵”。所谓“螺旋矩阵”,是指从左上角第1个格子开始,按顺时针螺旋方向填充。要求矩阵的规模为m行n列,满足条件:m*n等于N;m>=n;且m-n取所有可能值中的最小值。

输入格式:

输入在第1行中给出一个正整数N,第2行给出N个待填充的正整数。所有数字不超过10^4,相邻数字以空格分隔。

输出格式:

输出螺旋矩阵。每行n个数字,共m行。相邻数字以1个空格分隔,行末不得有多余空格。

输入样例:
12
37 76 20 98 76 42 53 95 60 81 58 93

输出样例:
98 95 93
42 37 81
53 20 76
58 60 76

原题地址:https://www.patest.cn/contests/pat-b-practise/1050


思路:先计算出m和n,然后旋转填数,可以用一个数组标记已经访问过的位置,每次访问到边界或者是已经填过数的地方都换一个方向,直到所有的数被填完。

计算m、n的方法:根据题目条件我们可以知道m与n是N的隔得最近的两个因子,因此可以从sqrt(N)开始向下寻找能被N整除的值,这个就是n了

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cctype>
using namespace std;

int N;

bool compare(const int &a, const int &b)
{
    return a > b;
}

void solve()
{
    int A[N];
    for(int i = 0; i < N; i ++){
        cin >> A[i];
    }
    sort(A, A + N, compare);

    //以sqrt(n)向下寻找最大的n 
    int m, n = sqrt(N);
    while(N % n != 0){
        n --;
    }
    m = N / n;

    int T[m][n];
    bool vis[m][n]; //vis[i][j] = true表示(i,j)已经访问过 
    int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}, di = 0;

    for(int i = 0; i < m; i ++)
        for(int j = 0; j < n; j ++){
            vis[i][j] = false;
        }

    int i = 0, j = 0, k = 0;
    do{
        T[i][j] = A[k ++];
        vis[i][j] = true;

        int ni = i + dx[di], nj = j + dy[di];
        if(ni < 0 || ni >= m || nj < 0 || nj >= n || vis[ni][nj]){
            di = (di + 1) % 4;
        }

        i += dx[di];
        j += dy[di];
    }while(k < N);

    for(int i = 0; i < m; i ++){
        for(int j = 0; j < n; j ++){
            cout << T[i][j];
            if(j + 1 < n)
                cout << " ";
        }
        cout << endl;
    }

}

int main()
{
    cin >> N;
    solve();
    return 0;
}

另外一种旋转填充矩阵的方法:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cctype>
using namespace std;

int N;

void solve()
{
    int A[N];
    for(int i = 0; i < N; i ++){
        cin >> A[i];
    }
    sort(A, A + N);

    int n = sqrt(N), m;
    while(N % n){
        n --;
    }
    m = N / n;

    int T[m][n];

    for(int side = 0, k = N - 1; side * 2 < n; side ++){
        for(int j = side; j < n - side; j ++)
            T[side][j] = A[k --];

        for(int i = side + 1; i < m - side; i ++)
            T[i][n - 1 - side] = A[k --];

        for(int j = n - 2 - side; j >= side; j --)
            T[m - 1 - side][j] = A[k --];

        if(n - 1 - side > side)    //N为素数时只有一列防止覆盖
            for(int i = m - 2 - side; i >= side + 1; i --)
                T[i][side] = A[k --];
    }

    for(int i = 0; i < m; i ++){
        for(int j = 0; j < n; j ++){
            cout << T[i][j];
            if(j + 1 < n)
                cout << " ";
        }
        cout << endl;
    }
}

int main()
{
    cin >> N;
    solve();
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值