第七届蓝桥杯第8题:四平方和

四平方和


四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。


比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)


对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法




程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开


例如,输入:
5
则程序应该输出:
0 0 1 2


再例如,输入:
12
则程序应该输出:
0 2 2 2


再例如,输入:
773535
则程序应该输出:
1 1 267 838


资源约定:
峰值内存消耗 < 256M
CPU消耗  < 3000ms


请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。


注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型。


分析:直接穷举:

#include <stdio.h>
#include <math.h>

int main()
{
	int a, b, c, n, flag = 0;
	double maxN, d;
	scanf("%d", &n);
	maxN = sqrt(n);

	for(a = 0; a <= maxN; a ++){
		for(b = a; b <= maxN; b ++){
			for(c = b; c <= maxN; c ++){
				d = sqrt(n - a*a - b*b - c*c);
				if(d == (int)d){
					printf("%d %d %d %d\n", a, b, c, (int)d);
					flag = 1;
					break;
				}
			}
			if(flag)
				break;
		}
		if(flag)
			break;
	}
	return 0;
}


大神代码:

#include <stdio.h>
#include <math.h>

int mpt[5000010] ={0};  //mpt[i] = 1表示i 能够用两个完全平方数相加而得。
int n;

void init()
{
	for(int i = 0 ; i*i <= n ; i ++)
		for(int j = 0 ; j*j <=n ; j ++)
			if(i*i+j*j <= n) mpt[i*i+j*j] = 1;
}

int main()
{
	int flag = false;
	scanf("%d",&n);
	init();
	for(int i = 0 ; i * i <= n ; i ++)
	{
		for(int j = 0 ; j * j <= n ; j ++){
			if(mpt[n - i*i - j*j] == 0)
				continue;   //如果剩下的差用两个完全平方数不能组合出来就不继续

			for(int k = 0 ; k * k <= n ; k ++)
			{
				int temp = n - i*i - j*j - k*k;
				double l = sqrt((double) temp);
				if(l == (int)l )
				{
					printf("%d %d %d %d\n",i,j,k,(int)l);
					flag = true;
					break;
				}
			}
			if(flag)break;
		}
		if(flag)break;
	}
	return 0;
}


展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值