51NOD 1040 1040 最大公约数之和 数论 欧拉函数

原创 2016年12月13日 14:39:28
1040 最大公约数之和
题目来源: rihkddd
基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏  关注
给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6
1,2,3,4,5,66的最大公约数分别为1,2,3,2,1,6,加在一起 = 15
Input
1个数N(N <= 10^9)
Output
公约数之和
Input示例
6
Output示例
15

设整数d,满足n%d=0;
gcd(n,k)=d —> nx + ky = d —-> n/d * x + k/d *y = 1
显然 对任意k<=n,满足gcd(n/d,k/d)=1的k的个数 就是gcd(n,k)=d的k个数
而这个k的个数就等于phi(n/d) (n的欧拉函数)
所以枚举d,将d*phi(n/d)累加就是最终答案


#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

void caulate_factor(int n,vector<int>&factor){//分解n的质因子
    factor.clear();
    for(int i=2,end=sqrt(n+1);i<=end;++i){
        if(n%i==0){
            factor.push_back(i);
            while(n%i==0){
                n/=i;
            }
        }
        if(i>=n)
            break;
    }
    if(n!=1)
        factor.push_back(n);
}

ll phi(ll n,vector<int>&factor){
    ll ans=n;
    for(int i=0;i<factor.size();++i){
        ans=ans*(factor[i]-1)/factor[i];
    }
    return ans;
}

ll slove(int n){
    ll ans=0;
    vector<int>factor_fac;
    for(int i=1,end=sqrt(n);i<=end;++i){//枚举d 
        if(n%i==0){
            int factor=i;
            caulate_factor(n/factor,factor_fac);
            ans+=factor*phi(n/factor,factor_fac);
            if(n/i>end){
                factor=n/i;
                caulate_factor(n/factor,factor_fac);
                ans+=factor*phi(n/factor,factor_fac);
            }
        }
    }
    return ans;
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
    int n;
    while(~scanf("%d",&n)){
        printf("%lld\n",slove(n));
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

51Nod 1051 最大矩阵和(DP—最大子段和变形)

1051 最大子矩阵和 基准时间限制:2 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个M*N的矩阵,找到此...

51nod 1019 逆序数 (树状数组)

1019 逆序数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 在一个排列中,如果一对数的前后位置与...
  • acm_hmj
  • acm_hmj
  • 2016年11月21日 21:09
  • 353

51NOD 1040 最大公约数之和(分析 + 欧拉函数)

传送门 1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数...

51Nod-1040-最大公约数之和

ACM模版描述题解很有趣的一道题,欧拉函数原来还可以这么玩~~~既然是1~n与n的公约数,那么肯定是n的因子。 每一个n的因子所对sum产生的增量为:gcd(n, i) = x(x为这个因子)的个数...
  • f_zyj
  • f_zyj
  • 2016年10月10日 20:00
  • 395

【51Nod 1040】 最大公约数之和

DescriptionSolution分析题目可以发现,两个数gcd(a,b)=xgcd(a,b)=x,则等价于gcd(ax,bx)=1gcd({a\over x},{b\over x})=1,问题就...

51 NOD 1188 最大公约数之和 V2(基础数论)

数学 推导公式 欧拉筛法

欧拉函数,筛法(最大公约数之和——极限版II,UVA 11426)

看到数据范围,大概就知道是O(nlogn)了。 然后一开始尝试用筛法来做,有一些细节没办法处理好,想要处理好至少要O(n^2logn),还不如O(n^2)。 注意啊我的方法是错的,只是讲一...

51 nod 1188 最大公约数之和 V2(狄利克雷卷积+线性筛法)

六级算法题的不一样做法

[51NOD1237]最大公约数之和 V3

题目大意给定nn,试求 ∑i=1n∑j=1ngcd(i,j) \sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) 结果对109+710^9+7取模。2≤n≤10102\le n\...

文章标题 51nod 最大公约数之和

51nod 最大公约数之和先是简单版本: 51nod 1040 最大公约数之和 题目链接:最大公约数之和 Description 给出一个n,求1-n这n个数,同n的最大公约数的和。(n...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:51NOD 1040 1040 最大公约数之和 数论 欧拉函数
举报原因:
原因补充:

(最多只允许输入30个字)