poj1737 组合dp

原创 2015年07月10日 21:08:46

http://poj.org/problem?id=1737

Description

An undirected graph is a set V of vertices and a set of E∈{V*V} edges.An undirected graph is connected if and only if for every pair (u,v) of vertices,u is reachable from v. 
You are to write a program that tries to calculate the number of different connected undirected graph with n vertices. 
For example,there are 4 different connected undirected graphs with 3 vertices. 

Input

The input contains several test cases. Each test case contains an integer n, denoting the number of vertices. You may assume that 1<=n<=50. The last test case is followed by one zero.

Output

For each test case output the answer on a single line.

Sample Input

1
2
3
4
0

Sample Output

1
1
4
38
/**
poj1737 组合dp
题目大意:给定节点数n,问由这些节点组成的连通图有多少种
解题思路:从n个点所有的连接方法中删去那些不能构成连通图的连法.然后想法就是用f[i]记录i个点的连通图数目,然后递推.
          具体来说,为了避免重复,选择一个固定点x,不管怎样,我们先选择x这个点,然后再从其他剩余的n-1个点中
          分别选0~n-2个点与x构成连通图.然后其他剩余的n-1~1个点他们之间的连接方法随意,也就是2^m种.
          m=完全图的边数=点数*(点数-1)/2.
          初值f[1]=1最后的公式也就是:
          f[n]=2^(n*(n-1)/2)-(f[1]*c[n-1][0]*2^((n-1)*(n-2)/2)+...+f[i]*c[n-1][i-1]*2^((n-i)*(n-i-1)/2+...+f[n-1]*c[n-1][n-2]*2^0)
*/
import java.math.*;  
import java.util.*;   
public class Main {   
      
    public static void main(String[] args) {  
        BigInteger two[] = new BigInteger [2556];  
        two[0] = BigInteger.ONE;  
        for(int i = 1; i <= 2550; i++)  
            two[i] = two[i - 1].multiply(BigInteger.valueOf(2));  
        BigInteger h[] = new BigInteger [55];  
        for(int i = 1; i <= 50; i++){  
            h[i] =two[(i*(i-1))/2];  
        }  
        BigInteger C[][] = new BigInteger[55][55];  
        C[0][0] = BigInteger.ONE;  
        for(int i = 0; i <= 50; i++){  
            C[i][0] = C[i][i] = BigInteger.ONE;  
            for(int j = 1; j < i; j++){  
                C[i][j] = C[i - 1][j].add(C[i - 1][j - 1]);  
            }  
        }  
        BigInteger f[] = new BigInteger[55];  
        BigInteger g[] = new BigInteger[55];  
        f[1] = BigInteger.ONE;  
        for(int i = 2; i <= 50; i++) {  
            g[i] = BigInteger.ZERO;  
            for(int j = 1; j < i; j++) {  
                g[i] = g[i].add(C[i - 1][j - 1].multiply(f[j]).multiply(h[i - j]));  
            }  
            f[i] = h[i].subtract(g[i]);  
        }  
        int n;  
        Scanner cin = new Scanner(System.in);  
        while(cin.hasNext()){  
            n = cin.nextInt();  
            if(n == 0) break;  
            System.out.println(f[n]);  
        }  
    }    
}  


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1737 统计有n个顶点的连通图有多少个 (带标号)

设f(n)为所求答案 g(n)为n个顶点的非联通图 则f(n) + g(n) = h(n) = 2^(n * (n - 1) / 2) 其中h(n)是n个顶点的联图的个数 这样计算 ...

poj1737 Connected Graph(组合数学)

题意: 就是给出结点个数,这些结点都认为是不一样的,要你求出这些点能组成多少种无向图的全连通图 f(n)表示n个结点共有多少种方案。 n个结点的总方案数为H[C(n,2)]=2^C(n,2)...

poj 1737 Connected Graph 组合递推计数+高精度

题意: 求n个点的无向联通图有多少个。 分析: 递推计数,需要高精度,我这个模版里的乘法利用了m位数乘n位数不超过m+n位数的原理采用了延迟进位技术,无需设置进位,乘法代码不超过10行。 代码...
  • sepNINE
  • sepNINE
  • 2017年01月19日 10:10
  • 200

poj1737 带标号连通图计数(DP)

时间限制:1秒 内存限制:128M 【问题描述】   统计有 n 个不同顶点的连通图有多少个,图的顶点有编号。如图上是 n=3 时的 4 种不同连通图的方案。     【输入格式】   输入...

ACM,poj1737

  • 2011年03月27日 22:19
  • 907B
  • 下载

bzoj 1737: [Usaco2005 jan]Naptime 午睡时间 (DP)

题目描述传送门题解f[i][j][0]f[i][j][0]表示到第i个一共选了j段,第i个不选的最大价值 f[i][j][1]f[i][j][1]表示到第i个一共选了j段,第i个必选的最大价值 转...

poj 1850 数位dp/排列组合

题意: 字符串可以由26个小写字母组成,按字典序排列。a,b,……..abcde..xyz编号为1,2,…….。给出一个字符串,求他的编号,如果不符合要求,输出0. 分析; 因为是组合数学分类的...

poj2282(组合数学,数位上的dp)

题意: 计算给定范围内0-9这些数出现的次数 题解: 组合数学方法即可算出,感觉dp太大材小用了。 给出解法,都在代码注释里头。 #include #include #include #in...

POJ1737 Connected Graph【数学】

题意:有n个点,问把它们连起来的方案数 思路:n个点一共n * (n-1) / 2 条边,设为h[n],一共方案数2 ^ h[n],去掉不连通的情况,选取一个固定点,再选k(0 ≤ k 个点方案数...
  • wjw1340
  • wjw1340
  • 2017年08月06日 20:58
  • 48

poj 3252 Round Numbers(数位dp+组合计数)

题意:询问区间[L,R]内中的二进制数0>=1的数的个数。 思路:网上很多都直接推导一下就算出来了。。。。我只会用数位dp搞一下,再计数Orz……觉得自己数学思维实在太差了、、、、dp[i][j][...
  • qian99
  • qian99
  • 2014年03月28日 20:07
  • 412
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj1737 组合dp
举报原因:
原因补充:

(最多只允许输入30个字)