关闭

Android 图片加载Bitmap OOM错误解决办法

470人阅读 评论(0) 收藏 举报
分类:
Android 图片加载Bitmap OOM错误解决办法
Android加载资源图片时,很容易出现OOM的错误。
因为Android系统对内存有一个限制,如果超出该限制,就会出现OOM。为了避免这个问题,需要在加载资源时尽量考虑如何节约内存,尽快释放资源等等。

Android系统版本对图片加载,回收的影响:
1,在Android 2.3以及之后,采用的是并发回收机制,避免在回收内存时的卡顿现象。
2,在Android 2.3.3(API Level 10)以及之前,Bitmap的backing pixel 数据存储在native memory, 与Bitmap本身是分开的,Bitmap本身存储在dalvik heap 中。导致其pixel数据不能判断是否还需要使用,不能及时释放,容易引起OOM错误。 从Android 3.0(API 11)开始,pixel数据与Bitmap一起存储在Dalvik heap中。

在加载图片资源时,可采用以下一些方法来避免OOM的问题:
1,在Android 2.3.3以及之前,建议使用Bitmap.recycle()方法,及时释放资源。
2,在Android 3.0开始,可设置BitmapFactory.options.inBitmap值,(从缓存中获取)达到重用Bitmap的目的。如果设置,则inPreferredConfig属性值会被重用的Bitmap该属性值覆盖。
3,通过设置Options.inPreferredConfig值来降低内存消耗:
     默认为ARGB_8888: 每个像素4字节. 共32位。
     Alpha_8: 只保存透明度,共8位,1字节。
     ARGB_4444: 共16位,2字节。
     RGB_565:共16位,2字节。
     如果不需要透明度,可把默认值ARGB_8888改为RGB_565,节约一半内存。
4,通过设置Options.inSampleSize 对大图片进行压缩,可先设置Options.inJustDecodeBounds,获取Bitmap的外围数据,宽和高等。然后计算压缩比例,进行压缩。
5,设置Options.inPurgeable和inInputShareable:让系统能及时回收内存。
      inPurgeable:设置为True,则使用BitmapFactory创建的Bitmap用于存储Pixel的内存空间,在系统内存不足时可以被回收,当应用需要再次访问该Bitmap的Pixel时,系统会再次调用BitmapFactory 的decode方法重新生成Bitmap的Pixel数组。
                        设置为False时,表示不能被回收。
      inInputShareable:设置是否深拷贝,与inPurgeable结合使用,inPurgeable为false时,该参数无意义。 
                                  True:  share  a reference to the input data(inputStream, array,etc) 。 False :a deep copy。
6,使用decodeStream代替其他decodeResource,setImageResource,setImageBitmap等方法来加载图片。
     区别: 
      decodeStream直接读取图片字节码,调用nativeDecodeAsset/nativeDecodeStream来完成decode。无需使用Java空间的一些额外处理过程,节省dalvik内存。但是由于直接读取字节码,没有处理过程,因此不会根据机器的各种分辨率来自动适应,需要在hdpi,mdpi和ldpi中分别配置相应的图片资源,否则在不同分辨率机器上都是同样的大小(像素点数量),显示的实际大小不对。
      decodeResource会在读取完图片数据后,根据机器的分辨率,进行图片的适配处理,导致增大了很多dalvik内存消耗。

       decodeStream调用过程:
             decodeStream(InputStream,Rect,Options) -> nativeDecodeAsset/nativeDecodeStream
       decodeResource调用过程:即finishDecode之后,调用额外的Java层的createBitmap方法,消耗更多dalvik内存。
             decodeResource(Resource,resId,Options)  -> decodeResourceStream (设置Options的inDensity和inTargetDensity参数)  -> decodeStream() (在完成Decode后,进行finishDecode操作)
             finishDecode() -> Bitmap.createScaleBitmap()(根据inDensity和inTargetDensity计算scale) -> Bitmap.createBitmap()

以上方法的组合使用,合理避免OOM错误。
                    
0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:11192次
    • 积分:204
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:2篇
    • 译文:1篇
    • 评论:2条
    文章分类
    最新评论