POJ1742多重背包

18 篇文章 0 订阅
8 篇文章 0 订阅

典型的单调队列优化dp。
对于n类物品,某类物品的数量为k,价值为v,容量为w。
那么考虑到这个种类的物品的时候有如下dp方程:
设dp[i]表示容量为i的时候得到的最大价值,那么我们就有:


换一种写法:


这里为了方便,我们用s[j]表示dp[mod+j*w],所以就有

这里k已经是定值,也就是说dp[mod+k*w]只和一定范围内的s[j]-j*v的最大值有关,可以用单调队列优化。
总的复杂度是O(N*V)的。
这道题比较简单,由于价值都是1的,我们就直接开一个bool型数组存储是否存在解就可以了。然后枚举到的k如果dp[k]是可达的,那么我们就将其id入队,否则就不管,另外由于价值一样,所以不要记录价值。
此类背包问题还可以进一步地优化,如果k等于1的时候直接写0-1背包,如果物品可以取得的总容量大于背包总容量,那么就直接写完全背包,因为这两种写法和单调队列相比常数小了非常多。
最后考虑到很大的输入输出量,选择C++编译器。

 

完整代码:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值