[CQOI2013]新Nim游戏

题意

两个参与者在各自的第一回合都能拿若干个整堆的火柴,可不拿但不能全部拿走,从第二回合开始规则和Nim游戏一样。求 先手是否能必胜,必胜时先手在第一回合拿的最少的火柴数。

火柴堆数 k100
每堆火柴个数 a[i]109

Time Limits:1000ms
Memory Limits:512000KB

题意

由SG定理可以知道,先手肯定获胜,因为他可以在第一回合拿到只剩一堆火柴。
现在我们就是要求先手在第一回合拿的最少的火柴数。由SG定理可以知道,我们要在第一回合去掉一些数,使剩下的数任取若干个数异或值都不会等于0(若能,则后手在他的第一回合取掉其他的数,使剩下的数异或值为0,这样后手必胜)。
这样我们就是求极大线性无关基。
具体做法:将每个数转成二进制来看。对于所有数从大到小来做,当前做到的数 a[i] ,类似高斯消元,不断找到它当前二进制下最高位的 1 ,然后将a[i]与对应的主元异或。最后若 a[i]=0 ,说明 a[i] 跟前面的一些未拿走的数异或起来会等于0,这样我们要取走 a[i] 才能保证先手必胜。这就是求极大线性无关基。答案能保证最优。

代码

#include <cstdio>
#include <algorithm>
using namespace std;

typedef long long LL;
const int N = 110,M = 35;
int n,s[N],st[M],c[M];
LL ans;

bool cmp(int a,int b) {
    return a > b;
}

int main() {
    scanf("%d",&n);
    for (int i = 1;i <= n;i ++) scanf("%d",&s[i]);
    c[0] = 1;
    for (int i = 1;i <= 30;i ++) c[i] = c[i - 1] << 1;
    sort(s + 1,s + 1 + n,cmp);
    for (int i = 1;i <= n;i ++) {
        int cur = s[i];
        for (int j = 30;j >= 0;j --) if (c[j] & s[i]) {
            if (!st[j]) {
                st[j] = i;
                break;
            }
            s[i] ^= s[st[j]];
        }
        if (!s[i]) ans += LL(cur);
    }
    printf("%lld",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值