首先由
N
i
m
Nim
Nim 游戏的规则可知,当所有堆的火柴数都为
0
0
0 时即为胜利,此时所有堆的火柴数的异或和为
0
0
0 。进而可以反推,能够一步走到异或和为 0 的状态都为必胜状态。那么为了让自己保证能够获胜,必然要让对手无论取走多少堆也不能构成 异或和为 0 的局面。了解到这个规律后,就可以快乐的 套上线性基做题了。
由于题目中要求的是第一回合拿的火柴总数尽量小,则需要把最大的能够插入线性基的留给对手,而不能插入的(即可以用线性基内的元素异或而成的值)则拿掉。因此可以贪心的对数据进行递减的排序并插入,答案即为所有不能插入之和。
(写完这题就离 18 年的牛客多校第八场的 H 更近了)
参考代码
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=105;
int p[N],a[N];
bool cmp(int x,int y){
return x<y;
}
int flag;
void insert(int x){
flag=0;
for(int i=60;i+1;i--){
if(x==0){
flag=0;
break;
}
if(!(x>>i))
continue;
if(!p[i]){
p[i]=x;
flag=1;
break;
}
x^=p[i];
}
}
signed main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
int sum=0;
sort(a+1,a+n+1,cmp);
for(int i=n;i>=1;i--){
insert(a[i]);
if(!flag)
sum+=a[i];
}
cout<<sum;
return 0;
}