P4301 [CQOI2013] 新Nim游戏 (博弈结论套线性基)

传送门

首先由 N i m Nim Nim 游戏的规则可知,当所有堆的火柴数都为 0 0 0 时即为胜利,此时所有堆的火柴数的异或和为 0 0 0 。进而可以反推,能够一步走到异或和为 0 的状态都为必胜状态。那么为了让自己保证能够获胜,必然要让对手无论取走多少堆也不能构成 异或和为 0 的局面。了解到这个规律后,就可以快乐的 套上线性基做题了。

由于题目中要求的是第一回合拿的火柴总数尽量小,则需要把最大的能够插入线性基的留给对手,而不能插入的(即可以用线性基内的元素异或而成的值)则拿掉。因此可以贪心的对数据进行递减的排序并插入,答案即为所有不能插入之和。

(写完这题就离 18 年的牛客多校第八场的 H 更近了)

参考代码

#include <bits/stdc++.h>
#define int long long

using namespace std;
const int N=105;
int p[N],a[N];

bool cmp(int x,int y){
	return x<y;
}

int flag;
void insert(int x){
	flag=0;
	for(int i=60;i+1;i--){
		if(x==0){
			flag=0;
			break;
		}
		if(!(x>>i))
			continue;
		if(!p[i]){
			p[i]=x;
			flag=1;
			break;
		}
		x^=p[i];
	}
}

signed main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	
	int sum=0;
	sort(a+1,a+n+1,cmp);
	for(int i=n;i>=1;i--){
		insert(a[i]);
		if(!flag)
			sum+=a[i];
	}
	cout<<sum;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值