NNDL 作业11:优化算法比较

目录

1. 编程实现图6-1,并观察特征 

2. 观察梯度方向 

3. 编写代码实现算法,并可视化轨迹 

4. 分析上图,说明原理

(1)为什么SGD会走“之字形”?其它算法为什么会比较平滑?

(2)Momentum、AdaGrad对SGD的改进体现在哪里?速度?方向?在图上有哪些体现?

(3)仅从轨迹来看,Adam似乎不如AdaGrad效果好,是这样么?

5. 总结SGD、Momentum、AdaGrad、Adam的优缺点(选做)

6. Adam这么好,SGD是不是就用不到了?(选做) 

 总结


1. 编程实现图6-1,并观察特征 

 

 

import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
 
 
def func(x, y):
    return x * x / 20 + y * y
 
 
def paint_loss_func():
    x = np.linspace(-50, 50, 100)  # x的绘制范围是-50到50,从改区间均匀取100个数
    y = np.linspace(-50, 50, 100)  # y的绘制范围是-50到50,从改区间均匀取100个数
 
    X, Y = np.meshgrid(x, y)
    Z = func(X, Y)
 
    fig = plt.figure()  # figsize=(10, 10))
    ax = Axes3D(fig)
    plt.xlabel('x')
    plt.ylabel('y')
 
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
    plt.show()
 
 
paint_loss_func()

 

 特征

  • 是向x轴方向延申的“碗”状函数,两端高,中间低。
  • 等高线呈向x轴方向延申的椭圆状
  • 有全局最小值

2. 观察梯度方向 

 f(x,y)=\frac{1}{20} x^{2}+y^{2}

上式表示的函数梯度如下图所示: 

由图像能够看出该函数梯度的特征为:

  1. 在y轴方向的坡度大,在x轴方向的坡度小。
  2. 虽然最小值在(x,y)=(0,0)处,但梯度在很多地方并没有指向(0,0)。

3. 编写代码实现算法,并可视化轨迹 

最优化方法的比较SGD、Momentum、Adagrad、Adam

import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
 
 
class SGD:
    """随机梯度下降法(Stochastic Gradient Descent)"""
 
    def __init__(self, lr=0.01):
        self.lr = lr
 
    def update(self, params, grads):
        for key in params.keys():
            params[key] -= self.lr * grads[key]
 
 
class Momentum:
    """Momentum SGD"""
 
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
 
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)
 
        for key in params.keys():
            self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
            params[key] += self.v[key]
 
 
class Nesterov:
    """Nesterov's Accelerated Gradient (http://arxiv.org/abs/1212.0901)"""
 
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
 
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)
 
        for key in params.keys():
            self.v[key] *= self.momentum
            self.v[key] -= self.lr * grads[key]
            params[key] += self.momentum * self.momentum * self.v[key]
            params[key] -= (1 + self.momentum) * self.lr * grads[key]
 
 
class AdaGrad:
    """AdaGrad"""
 
    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None
 
    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)
 
        for key in params.keys():
            self.h[key] += grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
 
 
class RMSprop:
    """RMSprop"""
 
    def __init__(self, lr=0.01, decay_rate=0.99):
        self.lr = lr
        self.decay_rate = decay_rate
        self.h = None
 
    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)
 
        for key in params.keys():
            self.h[key] *= self.decay_rate
            self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)
 
 
class Adam:
    """Adam (http://arxiv.org/abs/1412.6980v8)"""
 
    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.iter = 0
        self.m = None
        self.v = None
 
    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = {}, {}
            for key, val in params.items():
                self.m[key] = np.zeros_like(val)
                self.v[key] = np.zeros_like(val)
 
        self.iter += 1
        lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)
 
        for key in params.keys():
            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
            self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])
 
            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
 
 
def f(x, y):
    return x ** 2 / 20.0 + y ** 2
 
 
def df(x, y):
    return x / 10.0, 2.0 * y
 
 
init_pos = (-7.0, 2.0)
params = {}
params['x'], params['y'] = init_pos[0], init_pos[1]
grads = {}
grads['x'], grads['y'] = 0, 0
 
optimizers = OrderedDict()
optimizers["SGD"] = SGD(lr=0.95)
optimizers["Momentum"] = Momentum(lr=0.1)
optimizers["AdaGrad"] = AdaGrad(lr=1.5)
optimizers["Adam"] = Adam(lr=0.3)
 
idx = 1
 
for key in optimizers:
    optimizer = optimizers[key]
    x_history = []
    y_history = []
    params['x'], params['y'] = init_pos[0], init_pos[1]
 
    for i in range(30):
        x_history.append(params['x'])
        y_history.append(params['y'])
 
        grads['x'], grads['y'] = df(params['x'], params['y'])
        optimizer.update(params, grads)
 
    x = np.arange(-10, 10, 0.01)
    y = np.arange(-5, 5, 0.01)
 
    X, Y = np.meshgrid(x, y)
    Z = f(X, Y)
    # for simple contour line
    mask = Z > 7
    Z[mask] = 0
 
    # plot
    plt.subplot(2, 2, idx)
    idx += 1
    plt.plot(x_history, y_history, 'o-', color="red")
    plt.contour(X, Y, Z)  # 绘制等高线
    plt.ylim(-10, 10)
    plt.xlim(-10, 10)
    plt.plot(0, 0, '+')
    plt.title(key)
    plt.xlabel("x")
    plt.ylabel("y")
 
plt.subplots_adjust(wspace=0, hspace=0)  # 调整子图间距
plt.show()

 

由图可以看出这四个最优化方法中AdaGrad的收敛效果最好。  

4. 分析上图,说明原理

(1)为什么SGD会走“之字形”?其它算法为什么会比较平滑?

SGD算法是从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样本量及其大的情况下,可能不用训练完所有的样本就可以获得一个损失值在可接受范围之内的模型,而且SGD没有动量的概念。
其他算法比较平滑是因为对SGD梯度摆动的问题进行解决,例如Momentum就是引入了动量这一概念来减弱Z字型走位。从而得到的图像比较平滑。


(2)Momentum、AdaGrad对SGD的改进体现在哪里?速度?方向?在图上有哪些体现?

Momentum

 SGD下降方法的缺点是参数更新方向只依赖于当前batch计算出的梯度,因此十分的不稳定。为了抑制SGD的震荡,动量认为梯度下降的过程中可以加入惯性。动量梯度下降法运行速度总是快于标准的梯度下降法,其基本思想是在SGD的基础上引入了一阶动量:

m_{t}=\beta _{m_{t-1}}+(1-\beta )g_{t}

一阶动量指的是各个时刻梯度的指数加权平均,约等于\frac{1}{1-\beta_{1}}个历史时刻的梯度向量和的平均值,也就是t时刻的下降方向,不仅由当前点的梯度方向决定,还由此前的累积的梯度来决定,β的经验值一般为0.9,也就是意味着下降方向主要是此前累积的下降方向,并略微偏向当前时刻的下降方向。并利用当前batch微调最终的更新方向。如果当前梯度方向与历史梯度一致,会增强该方向的梯度。如果不一致,能够减少更新。

AdaGrad

AdaGrad其实是对学习率进行了约束,AdaGrad独立地适应所有模型参数的学习率,缩放每个参数反比于其它所有梯度历史平方值总和的平方根。损失较大偏导的参数相应地拥有一个快速下降的学习率,而较小偏导的参数在学习率上有相对较小的下降。净效果是在参数空间中更为平缓的倾斜方向会取得更大的进步。

(3)仅从轨迹来看,Adam似乎不如AdaGrad效果好,是这样么?

不一定。AdaGrad在某些模型上效果不错,但不是全部,因为AdaGrad从训练开始时累积平方梯度值会越来越大,会导致学习率过早和过量的减少,从而导致迭代后期收敛极其缓慢;

Adam每次迭代参数的学习步长都有一个确定的范围,不会因为很大的梯度导致很大的学习步长,参数的值比较稳定,但学习率在训练的后期仍然可能不稳定导致无法收敛到足够好的值,泛化能力较差,但相比于Adagrad,不用存储全局所有的梯度,适合处理大规模数据

5. 总结SGD、Momentum、AdaGrad、Adam的优缺点(选做)

  • SGD

优点:训练收敛速度快,可以在线更新模型,有几率跳出局部最优达到更好的局部最优或者全局最优 。
缺点:选择合适的learning rate比较困难;容易收敛到局部最优,并且在某些情况下可能被困在鞍点。

  • Momentum

优点:一方面可以加快收敛速度,另一方面可以提高精度(减少震荡,使模型收敛更稳定)。
缺点:需要人工设定学习率,需要有可靠的初始化参数。

  • AdaGrad

优点:前期gt较小的时候,regularizer较大,能够放大梯度;后期gt较大的时候。regularizer较小,能够约束梯度 ,适合处理稀疏梯度 。
缺点:仍依赖于人工设置一个全局学习率,在这里插入图片描述设置过大的话,会使regularizer过于敏感,对梯度的调节太大。在训练的中后期,分母上梯度平方的累加将会越来越大,从而梯度趋近于0,使得训练提前结束。

  • Adam

优点:结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点;对内存需求较小;为不同的参数计算不同的自适应学习率;也适用于大多非凸优化,适用于大数据集和高维空间。
缺点:可能不收敛;可能错过全局最优解。

6. Adam这么好,SGD是不是就用不到了?(选做) 

       并不是,SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。SGD-M在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。把一阶动量和二阶动量都用起来,就是Adam了——Adaptive + Momentum。 但Adam并不能适应所有的场合,首先Adam可能不收敛,二阶动量是固定时间窗口内的累积,随着时间窗口的变化,遇到的数据可能发生巨变,使得 V t V_{t} Vt​ 可能会时大时小,不是单调变化。这就可能在训练后期引起学习率的震荡,导致模型无法收敛;其次,使用Adam可能错过全局最优解,同样的一个优化问题,不同的优化算法可能会找到不同的答案,但自适应学习率的算法往往找到非常差的答案。

 总结

   通过实验对SGD、Momentum、AdaGrad、Adam有了一定的了解,掌握每一种适合的使用的情况,并且明白了SGD最大的缺点是下降速度慢,而且可能会陷入局部最优,Adam结合了几种算法的优点,但泛化能力差,总的来说不如SGD。 

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值