Sun.02
码龄3年
关注
提问 私信
  • 博客:8,614
    8,614
    总访问量
  • 28
    原创
  • 1,319,523
    排名
  • 8
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2021-10-19
博客简介:

m0_63172447的博客

查看详细资料
个人成就
  • 获得31次点赞
  • 内容获得2次评论
  • 获得15次收藏
  • 代码片获得322次分享
创作历程
  • 28篇
    2022年
成就勋章
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

NNDL 作业12:第七章课后题

L_%7B2%7D。
原创
发布博客 2022.12.11 ·
173 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

NNDL 实验八 网络优化与正则化(3)不同优化算法比较

通过本次实验,对于AdaGrad算法和RMSprop算法有了更深的了解,对梯度估计修正的两种方法动量法和Adam算法学习更加深入。
原创
发布博客 2022.12.10 ·
148 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 作业11:优化算法比较

目录1. 编程实现图6-1,并观察特征 2. 观察梯度方向 3. 编写代码实现算法,并可视化轨迹 4. 分析上图,说明原理(1)为什么SGD会走“之字形”?其它算法为什么会比较平滑?(2)Momentum、AdaGrad对SGD的改进体现在哪里?速度?方向?在图上有哪些体现?(3)仅从轨迹来看,Adam似乎不如AdaGrad效果好,是这样么?5. 总结SGD、Momentum、AdaGrad、Adam的优缺点(选做)6. Adam这么好,SGD是不是就用不到了?(选做) 总结 特征 上式表示的
原创
发布博客 2022.12.05 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络与深度学习(七)循环神经网络(3)LSTM的记忆能力实验

长短期记忆网络(Long Short-Term Memory Network,LSTM)是一种可以有效缓解长程依赖问题的循环神经网络.LSTM 的特点是引入了一个新的内部状态(Internal State)和门控机制(Gating Mechanism).不同时刻的内部状态以近似线性的方式进行传递,从而缓解梯度消失或梯度爆炸问题.同时门控机制进行信息筛选,可以有效地增加记忆能力.例如,输入门可以让网络忽略无关紧要的输入信息,遗忘门可以使得网络保留有用的历史信息.在上一节的数字求和任务中,如果模型能够记住前两个
原创
发布博客 2022.12.03 ·
412 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

NNDL 作业10:第六章课后题(LSTM | GRU)

本次作业通过推导对 LSTM 、GRU有了进一步的了解,GRU参数更少,收敛更快;数据量很大时,LSTM效果会更好一些,因为LSTM参数也比GRU参数多一些。
原创
发布博客 2022.11.28 ·
158 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

神经网络与深度学习(七)循环神经网络(2)梯度爆炸实验

范数,是具有“距离”概念的函数。我们知道距离的定义是一个宽泛的概念,只要满足非负、自反、三角不等式就可以称之为距离。范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。L2范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下:表示向量元素的平方和再开平方。L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。
原创
发布博客 2022.11.27 ·
174 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 作业9:分别使用numpy和pytorch实现BPTT

6-2P:设计简单RNN模型,分别用Numpy、Pytorch实现反向传播算子,并代入数值测试.
原创
发布博客 2022.11.25 ·
77 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 实验七 循环神经网络(1)RNN记忆能力实验

本次实验对循环神经网络有了进一步的了解,并且对它的记忆能力进行了实验,明白了和前馈神经网络相比,循环神经网络更加符合生物神经网络的结构原因h_%7Bt%7Dx_%7Bt%7Dt%20b%29h_%7Bt%7DMBLSBLMtb%29DMb_%7Bx%7Db_%7Bo%7D。
原创
发布博客 2022.11.24 ·
125 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

神经网络与深度学习作业8:RNN - 简单循环网络

这次实验更了解RNN循环神经网络,和RNN的时序功能 ,并且使用numpy实现SRN进行了实践。
原创
发布博客 2022.11.13 ·
164 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

NNDL 实验六 卷积神经网络(5)使用预训练resnet18实现CIFAR-10分类

预训练的简单概括就是使用尽可能多的训练数据,从中提取出尽可能多的共性特征,从而让模型对特定任务的学习负担变轻。预训练方式表现在模型参数上,就是我之前已经拿到一个任务,这个任务和其他任务有很多相同之处,于是提前训练好了所有的模型参数(预训练)。因此我们不再需要从0开始训练所有参数了,但是针对我们目前这个任务,有些参数可能不合适,我们只需要在当前参数的基础上稍加修改(微调)就可以得到比较好的效果,这样学习时间必然会大大减小。
原创
发布博客 2022.11.12 ·
750 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

神经网络与深度学习(六)卷积神经网络(4)ResNet18实现MNIST

本次是实验通过ResNet经典残差网络完成了Mnist手写数字的识别,学到了很多知识,对残差网络的结构,模型训练有更多的认识,希望能学到更多。
原创
发布博客 2022.11.06 ·
543 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

NNDL 实验六 卷积神经网络(3)LeNet实现MNIST

本次实验学到了很多新的知识 ,尤其是基于LeNet实现手写体数字识别,对数字识别有了更加清晰的认识,希望再接下来是的实验中学到更多相关内容。
原创
发布博客 2022.11.04 ·
216 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 作业7:第五章课后题(1×1 卷积核 | CNN BP)

以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。
原创
发布博客 2022.10.30 ·
730 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 实验六 卷积神经网络(2)基础算子

本次实验对神经网络基础算子的学习,让我对多通道卷积算子和汇聚层算子实现有了更深刻地理解,希望通过更多的实验不断提高自己。%201%201。
原创
发布博客 2022.10.25 ·
119 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

神经网络与深度学习 作业6:基于CNN的XO识别

从X、O文件夹,分别取出150张作为测试集,文件夹train_data:放置训练集 1600张图片,文件夹test_data: 放置测试集 400张图片。下载的数据集没有分测试集和训练集,共2000张图片,X、O各1000张。调用框架自带算子实现,对比自定义算子。自定义卷积算子、池化算子实现。可视化卷积核和特征图。
原创
发布博客 2022.10.23 ·
114 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 实验六 卷积神经网络(1)卷积

本次实验对卷积神经网络进行了复习和扩展,对卷积的操作有了更加清晰的认识,卷积对特征图的影响更明了。I%28i+
原创
发布博客 2022.10.21 ·
562 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

NNDL 作业5:卷积

当stride=20时:由图可知,当增加步长时,图像的会变得模糊。原图模糊边缘检测通过本次实验回顾了卷积、卷积核、特征图、特征选择、步长、填充、感受野的概念,conv2d函数的使用,深入探究了不同卷积核的作用,并且编程实现了灰度图的边缘检测,锐化,模糊等,并且对图像卷积步长改变不同得出结果不同,有了更加深刻地体会。
原创
发布博客 2022.10.16 ·
661 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 实验五 前馈神经网络(3)鸢尾花分类

加载数据集#加载原始数据#数据归一化#如果shuffle为True,随机打乱数据X = X_newy = y_new# 调用第三章中的数据读取函数,其中不需要将标签转成one-hot类型else:通过这次实验对前馈神经网络有了更清晰的认识,并且对于paddle,pytorch之间的区别有了更多的了解,对模型的构建和优化更加熟悉。
原创
发布博客 2022.10.15 ·
145 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 作业4:第四章课后题

根据w 的误差的影响,再乘以步长,就可以更新整个神经网络的权重。更新一轮之后,接着输入下一个样本,算出误差后又可以更新一轮,再输入一个样本,又来更新一轮,通过不断地输入新的样本迭代地更新模型参数,就可以缩小计算值与真实值之间的误差,最终完成神经网络的训练。当直接令w =0,b=0时,会让下一层神经网络中所有神经元进行着相同的计算,具有同样的梯度,同样权重更新。由于ReLU神经元的输出为0,在后续迭代的反向过程中,该处的梯度一直为0,相关参数不再变化,从而导致ReLU神经元的输入始终是负数,输出始终为0。
原创
发布博客 2022.10.09 ·
69 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

NNDL 实验五 前馈神经网络(2)自动梯度计算 & 优化问题

1. 使用pytorch的预定义算子来重新实现二分类任务。(必做)# 使用'paddle.nn.Linear'定义线性层。# 其中第一个参数(in_features)为线性层输入维度;第二个参数(out_features)为线性层输出维度# weight_attr为权重参数属性,这里使用'paddle.nn.initializer.Normal'进行随机高斯分布初始化# bias_attr为偏置参数属性,这里使用'paddle.nn.initializer.Constant'进行常量初始化。
原创
发布博客 2022.10.07 ·
140 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏
加载更多