NNDL 作业7:第五章课后题(1×1 卷积核 | CNN BP)

目录

习题5-2 证明宽卷积具有交换性,即公式(5.13)

习题5-3 分析卷积神经网络中用1×1的卷积核的作用

1 跨通道的特征整合

2 降维/升维

3 加非线性

4 跨通道信息交互(channal 的变换)

5 减少计算量

6 1x1卷积核应用

Inception

5-4对于一个输入为100×100×256的特征映射组,使用3×3的卷积核,输出为100×100×256的特征映射组的卷积层,求其时间和空间复杂度。如果引入一个1×1的卷积核,先得到100×100×64的特征映射,再进行3×3的卷积,得到100×100×256的特征映射组,求其时间和空间复杂度。 

5-7忽略激活函数,分析卷积网络中卷积层的前向计算和反向传播是一种转置关系。 

推导CNN反向传播算法 

2、已知卷积层的误差,反向推导上一隐藏层的误差

3、已知卷积层的误差,推导该层的W,b的梯度


习题5-2 证明宽卷积具有交换性,即公式(5.13)

 证明:
首先给定一个二维图像:和一个二维卷积核W\in \mathbb{R}^{U\times V}
因为要对图像X进行卷积,但是上面定义中提到了是宽卷积,所以先对他进行填充,两端各补U-1和V-1个零,得到全填充图像X\in \mathbb{R}^{(M+2U-2)\times (N+2V-2)}

为了方便我们先设一下

W=\begin{pmatrix} a_1&b_1\\ c_1&d_1\\ \end{pmatrix}

X=\begin{pmatrix} a_2&b_2&c_2\\ d_2&e_2&f_2\\ g_2&h_2&i_2\\ \end{pmatrix}

因为我们要证明交换性,所以要对W也填充,就是W两端各补M-1和N-1个零,得到全填充图像

W\in \mathbb{R}^{(U+2M-1)\times (V+2N-1)}

从我们设的X和W很容易可以看出来U=N=2,M=N=3。
那么填充完的

\widetilde{W}=\begin{pmatrix} 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&a_1&b_1&0&0\\ 0&0&c_1&d_1&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ \end{pmatrix}

\widetilde{X}=\begin{pmatrix} 0&0&0&0&0\\ 0&a_2&b_2&c_2&0\\ 0&d_2&e_2&f_2&0\\ 0&g_2&h_2&i_2&0\\ 0&0&0&0&0\\ \end{pmatrix}
然后把W和X旋转180°

 rot180(W)=\begin{pmatrix} d_1&c_1\\ b_1&a_1\\ \end{pmatrix}

rot180(X)=\begin{pmatrix} i_2&h_2&g_2\\ f_2&e_2&d_2\\ c_2&b_2&a_2\\ \end{pmatrix} 
然后就方便计算

rot180(W)\otimes \widetilde{X}=\begin{pmatrix} d_1&c_1\\ b_1&a_1\\ \end{pmatrix}\otimes \begin{pmatrix} 0&0&0&0&0\\ 0&a_2&b_2&c_2&0\\ 0&d_2&e_2&f_2&0\\ 0&g_2&h_2&i_2&0\\ 0&0&0&0&0\\ \end{pmatrix}=

\begin{pmatrix} a_1a_2&b_1a_2+a_1b_2&b_1b_2+a_1c_2&b_1c_2\\ c_1a_2+a_1d_2&d_1a_2+c_1b_2+b_1d_2+a_1e_2&d_1b_2+c_1c_2+b_1e_2+a_1f_2&d_1c_2+b_1f_2\\ c_1d_2+a_1g_2&d_1d_2+c_1e_2+b_1g_2+a_1h_2&d_1e_2+c_1f_2+b_1h_2+a_1i_2&d_1f_2+b_1i_2\\ c_1g_2&d_1g_2+c_1h_2&d_1h_2+c_1i_2&d_1i_2 \end{pmatrix}

 rot180(X)\otimes \widetilde{W}=\begin{pmatrix} i_2&h_2&g_2\\ f_2&e_2&d_2\\ c_2&b_2&a_2\\ \end{pmatrix}\otimes \begin{pmatrix} 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&a_1&b_1&0&0\\ 0&0&c_1&d_1&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ \end{pmatrix}=

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值