算法系列15天速成——第三天 七大经典排序【下】

本文详细介绍了三种排序算法:直接插入排序、希尔排序和归并排序。包括它们的工作原理、实现代码及时间复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天跟大家聊聊最后三种排序: 直接插入排序,希尔排序和归并排序。

 

直接插入排序:

       这种排序其实蛮好理解的,很现实的例子就是俺们斗地主,当我们抓到一手乱牌时,我们就要按照大小梳理扑克,30秒后,

   扑克梳理完毕,4条3,5条s,哇塞......  回忆一下,俺们当时是怎么梳理的。

       最左一张牌是3,第二张牌是5,第三张牌又是3,赶紧插到第一张牌后面去,第四张牌又是3,大喜,赶紧插到第二张后面去,

   第五张牌又是3,狂喜,哈哈,一门炮就这样产生了。

 

     怎么样,生活中处处都是算法,早已经融入我们的生活和血液。

     

     下面就上图说明:

             

      看这张图不知道大家可否理解了,在插入排序中,数组会被划分为两种,“有序数组块”和“无序数组块”,

     

      对的,第一遍的时候从”无序数组块“中提取一个数20作为有序数组块。

              第二遍的时候从”无序数组块“中提取一个数60有序的放到”有序数组块中“,也就是20,60。

              第三遍的时候同理,不同的是发现10比有序数组的值都小,因此20,60位置后移,腾出一个位置让10插入。

                      然后按照这种规律就可以全部插入完毕。

  

复制代码
using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 
 namespace InsertSort
 {
     public class Program
     {
         static void Main(string[] args)
         {
             List<int> list = new List<int>() { 3, 1, 2, 9, 7, 8, 6 };
 
             Console.WriteLine("排序前:" + string.Join(",", list));
 
             InsertSort(list);
 
             Console.WriteLine("排序后:" + string.Join(",", list));
         }
 
         static void InsertSort(List<int> list)
         {
             //无须序列
             for (int i = 1; i < list.Count; i++)
             {
                 var temp = list[i];
 
                 int j;
 
                 //有序序列
                 for (j = i - 1; j >= 0 && temp < list[j]; j--)
                 {
                     list[j + 1] = list[j];
                 }
                 list[j + 1] = temp;
             }
         }
     }
 }

 复制代码

 

希尔排序:

        观察一下”插入排序“:其实不难发现她有个缺点:

              如果当数据是”5, 4, 3, 2, 1“的时候,此时我们将“无序块”中的记录插入到“有序块”时,估计俺们要崩盘,

       每次插入都要移动位置,此时插入排序的效率可想而知。

   

      shell根据这个弱点进行了算法改进,融入了一种叫做“缩小增量排序法”的思想,其实也蛮简单的,不过有点注意的就是:

  增量不是乱取,而是有规律可循的。

首先要明确一下增量的取法:

      第一次增量的取法为: d=count/2;

      第二次增量的取法为:  d=(count/2)/2;

      最后一直到: d=1;

看上图观测的现象为:

        d=3时:将40跟50比,因50大,不交换。

                   将20跟30比,因30大,不交换。

                   将80跟60比,因60小,交换。

        d=2时:将40跟60比,不交换,拿60跟30比交换,此时交换后的30又比前面的40小,又要将40和30交换,如上图。

                   将20跟50比,不交换,继续将50跟80比,不交换。

        d=1时:这时就是前面讲的插入排序了,不过此时的序列已经差不多有序了,所以给插入排序带来了很大的性能提高。

 

既然说“希尔排序”是“插入排序”的改进版,那么我们就要比一下,在1w个数字中,到底能快多少?

 

下面进行一下测试:

View Code
View Code 
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading;
 using System.Diagnostics;
 
 namespace ShellSort
 {
     public class Program
     {
         static void Main(string[] args)
         {
             //5次比较
             for (int i = 1; i <= 5; i++)
             {
                 List<int> list = new List<int>();
 
                 //插入1w个随机数到数组中
                 for (int j = 0; j < 10000; j++)
                 {
                     Thread.Sleep(1);
                     list.Add(new Random((int)DateTime.Now.Ticks).Next(10000, 1000000));
                 }
 
                 List<int> list2 = new List<int>();
                 list2.AddRange(list);
 
                 Console.WriteLine("\n第" + i + "次比较:");
 
                 Stopwatch watch = new Stopwatch();
 
                 watch.Start();
                 InsertSort(list);
                 watch.Stop();
 
                 Console.WriteLine("\n插入排序耗费的时间:" + watch.ElapsedMilliseconds);
                 Console.WriteLine("输出前十个数:" + string.Join(",", list.Take(10).ToList()));
 
                 watch.Restart();
                 ShellSort(list2);
                 watch.Stop();
 
                 Console.WriteLine("\n希尔排序耗费的时间:" + watch.ElapsedMilliseconds);
                 Console.WriteLine("输出前十个数:" + string.Join(",", list2.Take(10).ToList()));
 
             }
         }
 
         ///<summary>
 /// 希尔排序
 ///</summary>
 ///<param name="list"></param>
         static void ShellSort(List<int> list)
         {
             //取增量
             int step = list.Count / 2;
 
             while (step >= 1)
             {
                 //无须序列
                 for (int i = step; i < list.Count; i++)
                 {
                     var temp = list[i];
 
                     int j;
 
                     //有序序列
                     for (j = i - step; j >= 0 && temp < list[j]; j = j - step)
                     {
                         list[j + step] = list[j];
                     }
                     list[j + step] = temp;
                 }
                 step = step / 2;
             }
         }
 
         ///<summary>
 /// 插入排序
 ///</summary>
 ///<param name="list"></param>
         static void InsertSort(List<int> list)
         {
             //无须序列
             for (int i = 1; i < list.Count; i++)
             {
                 var temp = list[i];
 
                 int j;
 
                 //有序序列
                 for (j = i - 1; j >= 0 && temp < list[j]; j--)
                 {
                     list[j + 1] = list[j];
                 }
                 list[j + 1] = temp;
             }
         }
     }
 }


截图如下:

 

看的出来,希尔排序优化了不少,w级别的排序中,相差70几倍哇。

 

归并排序:

       个人感觉,我们能容易看的懂的排序基本上都是O (n^2),比较难看懂的基本上都是N(LogN),所以归并排序也是比较难理解的,尤其是在代码

 编写上,本人就是搞了一下午才搞出来,嘻嘻。

 

首先看图:

归并排序中中两件事情要做:

            第一: “分”,  就是将数组尽可能的分,一直分到原子级别。

            第二: “并”,将原子级别的数两两合并排序,最后产生结果。

代码:

复制代码
using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 
 namespace MergeSort
 {
     class Program
     {
         static void Main(string[] args)
         {
             int[] array = { 3, 2, 1, 8, 9, 0 };
 
             MergeSort(array, new int[array.Length], 0, array.Length - 1);
 
             Console.WriteLine(string.Join(",", array));
         }
 
         ///<summary>
 /// 数组的划分
 ///</summary>
 ///<param name="array">待排序数组</param>
 ///<param name="temparray">临时存放数组</param>
 ///<param name="left">序列段的开始位置,</param>
 ///<param name="right">序列段的结束位置</param>
         static void MergeSort(int[] array, int[] temparray, int left, int right)
         {
             if (left < right)
             {
                 //取分割位置
                 int middle = (left + right) / 2;
 
                 //递归划分数组左序列
                 MergeSort(array, temparray, left, middle);
 
                 //递归划分数组右序列
                 MergeSort(array, temparray, middle + 1, right);
 
                 //数组合并操作
                 Merge(array, temparray, left, middle + 1, right);
             }
         }
 
         ///<summary>
 /// 数组的两两合并操作
 ///</summary>
 ///<param name="array">待排序数组</param>
 ///<param name="temparray">临时数组</param>
 ///<param name="left">第一个区间段开始位置</param>
 ///<param name="middle">第二个区间的开始位置</param>
 ///<param name="right">第二个区间段结束位置</param>
         static void Merge(int[] array, int[] temparray, int left, int middle, int right)
         {
             //左指针尾
             int leftEnd = middle - 1;
 
             //右指针头
             int rightStart = middle;
 
             //临时数组的下标
             int tempIndex = left;
 
             //数组合并后的length长度
             int tempLength = right - left + 1;
 
             //先循环两个区间段都没有结束的情况
             while ((left <= leftEnd) && (rightStart <= right))
             {
                 //如果发现有序列大,则将此数放入临时数组
                 if (array[left] < array[rightStart])
                     temparray[tempIndex++] = array[left++];
                 else
                     temparray[tempIndex++] = array[rightStart++];
             }
 
             //判断左序列是否结束
             while (left <= leftEnd)
                 temparray[tempIndex++] = array[left++];
 
             //判断右序列是否结束
             while (rightStart <= right)
                 temparray[tempIndex++] = array[rightStart++];
 
             //交换数据
             for (int i = 0; i < tempLength; i++)
             {
                 array[right] = temparray[right];
                 right--;
             }
         }
     }
 }

复制代码

结果图:

 

ps: 插入排序的时间复杂度为:O(N^2)

     希尔排序的时间复杂度为:平均为:O(N^3/2)

                                       最坏: O(N^2)

     归并排序时间复杂度为: O(NlogN)

                空间复杂度为:  O(N) 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值