[导读]Learning from Imbalanced Classes

原创 2016年08月30日 12:33:40
Imbalanced

原文:Learning from Imbalanced Classes

数据不平衡是一个非常经典的问题,数据挖掘、计算广告、NLP等工作经常遇到。该文总结了可能有效的方法,值得参考:

  • Do nothing. Sometimes you get lucky and nothing needs to be done. You can train on the so-called natural (or stratified) distribution and sometimes it works without need for modification.
  • Balance the training set in some way:
    • Oversample the minority class.
    • Undersample the majority class.
    • Synthesize new minority classes.
  • Throw away minority examples and switch to an anomaly detection framework.
  • At the algorithm level, or after it:
    • Adjust the class weight (misclassification costs).
    • Adjust the decision threshold.
    • Modify an existing algorithm to be more sensitive to rare classes.
  • Construct an entirely new algorithm to perform well on imbalanced data.
版权声明:本文为博主原创文章,未经博主允许不得转载。欢迎关注我们的网站(https://www.52ml.net),对机器学习感兴趣的欢迎加入我们的QQ群:252085834。

相关文章推荐

Learning from Imbalanced Data 非均衡数据学习问题

本文分什么是非均衡数据、非均衡数据对算法的影响、怎样处理非均衡学习以及非均衡学习评估这四个方面进行叙述。在这里,正例或者星号代表多数类,负例或者圆圈代表少数类。 1、非均衡问题 非均衡问题有多重形...

不平衡学习的方法 Learning from Imbalanced Data

之前做二分类预测的时候,遇到了正负样本比例严重不平衡的情况,甚至有些比例达到了50:1,如果直接在此基础上做预测,对于样本量较小的类的召回率会极低,这类不平衡数据该如何处理呢?不平衡数据的定义顾名思义...

Deep Learning Face Representation from Predicting 10,000 Classes

摘要  这篇paper旨在通过深度网络来学习高维特征,所谓的深度网络就是DeepID,用于人脸识别。我们将说明DeepID可以有效应用于多类人脸识别任务。同时也可以泛化到其他识别领域以及训练集中没有出...
  • prm10
  • prm10
  • 2016年01月28日 10:34
  • 787

《Deep Learning Face Representaion from Predicting 10000 Classes》读书报告

1、基本思想 训练多个深度卷积神经网络(deep ConvNets)对输入的人脸块(face patches)进行特征提取,然后训练每一个卷积神经网络(以下简称为ConvNet)的目标是...
  • zyazky
  • zyazky
  • 2016年11月07日 10:34
  • 303

FaceID-1:Deep Learning Face Representation from Predicting 10,000 Classes 笔记

FaceID-1
  • kunyXu
  • kunyXu
  • 2017年01月12日 11:21
  • 194

【翻译+原创】Deep Learning Face Representation from Predicting 10,000 Classes 论文笔记

摘要: 论文主要目的是通过深度学习去学习到一个高水平的特征表达集(DeepID)用于人脸验证。 DeepID 特征集是从深度卷积网络(ConvNets)的最后一个隐藏层神经元提取到的。这种特征是从...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[导读]Learning from Imbalanced Classes
举报原因:
原因补充:

(最多只允许输入30个字)