[导读]Learning from Imbalanced Classes

原创 2016年08月30日 12:33:40
Imbalanced

原文:Learning from Imbalanced Classes

数据不平衡是一个非常经典的问题,数据挖掘、计算广告、NLP等工作经常遇到。该文总结了可能有效的方法,值得参考:

  • Do nothing. Sometimes you get lucky and nothing needs to be done. You can train on the so-called natural (or stratified) distribution and sometimes it works without need for modification.
  • Balance the training set in some way:
    • Oversample the minority class.
    • Undersample the majority class.
    • Synthesize new minority classes.
  • Throw away minority examples and switch to an anomaly detection framework.
  • At the algorithm level, or after it:
    • Adjust the class weight (misclassification costs).
    • Adjust the decision threshold.
    • Modify an existing algorithm to be more sensitive to rare classes.
  • Construct an entirely new algorithm to perform well on imbalanced data.
版权声明:本文为博主原创文章,未经博主允许不得转载。欢迎关注我们的网站(https://www.52ml.net),对机器学习感兴趣的欢迎加入我们的QQ群:252085834。 举报

相关文章推荐

Deep Learning Face Representation from Predicting 10,000 Classes

摘要  这篇paper旨在通过深度网络来学习高维特征,所谓的深度网络就是DeepID,用于人脸识别。我们将说明DeepID可以有效应用于多类人脸识别任务。同时也可以泛化到其他识别领域以及训练集中没有出...
  • prm10
  • prm10
  • 2016-01-28 10:34
  • 634

《Deep Learning Face Representaion from Predicting 10000 Classes》读书报告

1、基本思想 训练多个深度卷积神经网络(deep ConvNets)对输入的人脸块(face patches)进行特征提取,然后训练每一个卷积神经网络(以下简称为ConvNet)的目标是...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Learning from Imbalanced Data 非均衡数据学习问题

本文分什么是非均衡数据、非均衡数据对算法的影响、怎样处理非均衡学习以及非均衡学习评估这四个方面进行叙述。在这里,正例或者星号代表多数类,负例或者圆圈代表少数类。 1、非均衡问题 非均衡问题有多重形...

不平衡学习的方法 Learning from Imbalanced Data

之前做二分类预测的时候,遇到了正负样本比例严重不平衡的情况,甚至有些比例达到了50:1,如果直接在此基础上做预测,对于样本量较小的类的召回率会极低,这类不平衡数据该如何处理呢?不平衡数据的定义顾名思义...

FaceID-1:Deep Learning Face Representation from Predicting 10,000 Classes 笔记

FaceID-1

【翻译+原创】Deep Learning Face Representation from Predicting 10,000 Classes 论文笔记

摘要: 论文主要目的是通过深度学习去学习到一个高水平的特征表达集(DeepID)用于人脸验证。 DeepID 特征集是从深度卷积网络(ConvNets)的最后一个隐藏层神经元提取到的。这种特征是从...

Learning C from Java

This is a list of differences between Java and C, and assumes that the reader knows less about the l...

HowTo: Export C++ classes from a DLL

The C++ programming language and Windows DLLs can live in peace after all. Download source - 11....

Exporting C++ classes from a DLL

Exporting C++ classes from a DLL 这个文章中的内容和之前的文章中的内容是一致的意思,核心思想是在创建动态库的时候创建一个重虚函数类作为基类接口使用,而在exe中使用这些...

Nested Classes(just for self-learning)

this piece of writing is reprinted from the following url: http://download.oracle.com/javase/tutori...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)