自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

计算之美

计算之美

  • 博客(861)
  • 收藏
  • 关注

原创 Dask study notes[3]

摘要 Dask DataFrame 是提升 Pandas 处理大数据效率的工具,通过并行化操作解决单机内存限制问题。它模拟 Pandas API,将数据分块为多个 Pandas DataFrame

2025-07-14 12:29:57 217

原创 sklearn study notes[2]

摘要:本文介绍了奇异矩阵(Singular Matrix)的特性,包括行列式为零、不可逆、存在线性相关的行/列以及有零特征值等判定条件。通过Python代码示例展示了如何使用scikit-learn的train_test_split分割数据集,

2025-07-14 09:29:21 218

原创 sklearn study notes[1]

线性回归模型通过最小化观测值与预测值之间的残差平方和来拟合数据。该模型包含截距项w0和系数w,可通过sklearn

2025-07-13 23:20:11 240

原创 Dask study notes[2]

本文演示了如何用Dask将大型数组分块处理。示例使用numpy创建100×900的数组,通过dask.array将其分块为20×30的小块。展示了分块后的数据结构、访问特定块的方法(如blocks[1,3

2025-07-13 10:33:04 142

原创 JAX study notes[17]

摘要:蒙特卡洛方法通过随机采样实现数值计算,基于大数定律。本文展示了用JAX库实现条件期望

2025-07-12 23:10:44 568

原创 TensorFlow2 study notes[2]

TensorFlow的ForwardAccumulator实现了前向模式自动微分,用于计算雅可比-向量乘积(JVP)。通过指定待跟踪变量(primals)和

2025-07-12 19:27:26 271

原创 TensorFlow2 study notes[1]

本文介绍了TensorFlow音频处理的基本操作。首先说明如何安装TensorFlow及相关库(torch、torchvision、torchaudio)。然后详细演示了音频解码功能(tf.audio.decode_wav),将16位P

2025-07-11 23:52:21 318

原创 JAX study notes[16]

JAX utilizes PyTrees, an abstract structure, to efficiently handle collections of arrays in

2025-07-11 15:51:17 447

原创 JAX study notes[15]

本文介绍了集合的对称差集和上下极限的计算方法。对称差集定义为仅属于A或仅属于B的元素集合,通过JAX实现为两个集合差集的并集。上下极限部分展示了

2025-07-06 23:28:13 837

原创 JAX study notes[13]

摘要:本文介绍了等价关系与群论的基本概念。等价关系R需满足自反性、对称性和传递性,其等价类[a]定义为与a相关的元素集合,所有等价类构成商集A/∼。群

2025-07-05 13:43:04 872

原创 JAX study notes[14]

摘要 Jaxprs是JAX框架的内部中间表示(IR),用于

2025-07-04 15:31:21 428

原创 Dask study notes[1]

摘要: Dask通过分块算法处理大型数组,调用NumPy ndarray API,其准确性依赖于Dask图。用户可按需导入Dask组件(如dask.array、dask.dataframe),并行计算需使用dask.distributed,机器学习任务可引入

2025-07-03 13:59:45 905

原创 JAX study notes[12]

JAX支持单程序多数据(SPMD)并行计算,允许将数据分散到不同设备(如GPU、CPU、TPU)上处理,无需强制所有数据均匀分布。其核心优化工具jax.jit通过即时编译提升执行效率,将函数分解为基本计算单元进行加速。该方法基于JAX官方文档实现,适用于异构计算环境的高性能需求。

2025-07-03 07:47:31 232

原创 实变与泛函题解-心得笔记【17】

集合

2025-07-01 14:10:00 126

原创 实变与泛函题解-心得笔记【16】

函数与集还有映射

2025-07-01 07:59:51 503

原创 JAX study notes[11]

本文演示了使用JAX库进行矩阵运算的基本操作,包括矩阵加法(a + b)、元素乘法(a * b)、点积(jnp.dot或@运算符)、转置(a.T

2025-06-30 23:05:39 347

原创 JAX study notes[10]

本文介绍了使用JAX创建和操作对角矩阵的方法。通过jnp.diag函数可以将一维数组转换为对角矩阵,或从对角矩阵提取对角线元素。演示了使用jnp.eye

2025-06-30 21:21:46 536

原创 JAX study notes[9]

本文介绍了Python编程基础,包括:1)单行注释写法;2)变量定义与数据类型(整数、浮点、字符串);3)主要数据结构(列表、元组、集合、字典);4)控制流程(if语句

2025-06-30 13:17:31 368

原创 JAX study notes[8]

JAX的静态类型检查功能逐渐成为Python编码标准的重要组成部分。jax.Array是表示数组的基类,在Python项目中可通过三个层级进行类型注释:1)作为文档说明;2)支持IDE智能补全;3)用于静态类型检查。JAX开发需兼容pytype和mypy两种类型检查工具,同时面临数组鸭子类型、装饰器转换、数组

2025-06-29 16:04:46 328

原创 实变与泛函题解-心得笔记【16】

集合

2025-06-28 23:55:25 48

原创 Dask心得与笔记【2】

本文展示了使用Dask、JAX和TensorFlow Probability进行分布式计算的示例。Dask通过延迟计算和分块处理大数据,如数组切片和聚合操作;JAX利用pmap实现多设备并行;TensorFlow Probability则结合分布式策略进行概率计算。这些工具都支持懒惰计算模式,仅在实际需要结果时才执行计算,适用于大规模数据处理和并行计算场景。文中代码示例涵盖了基本操作、函数调用及分布式环境下的使用方法。

2025-06-28 16:04:04 398

原创 实变与泛函题解-心得笔记【15】

集与特征函数

2025-06-28 15:41:40 194

原创 Dask心得与笔记【1】

Dask是一个分布式Python库,用于并行和分布式计算,简单易用且高效。它通过任务图在单机或多节点上执行计算,支持pandas和numpy等数据结构。安装简单,使用pip install "dask[complete]"即可安装完整的Dask及其依赖。Dask提供多种接口,如dask.dataframe和dask.array,便于数据处理和大规模算法优化。

2025-06-28 08:42:31 302

原创 JAX study notes[7]

摘要:JAX的numpy模块提供了linspace和arange函数来生成等间隔数列。linspace根据指定区间[start, stop]和数量num均匀生成数组

2025-06-27 23:05:49 531

原创 JAX study notes[6]

本文探讨了如何计算三维高斯随机向量在给定部分变量条件下的条件概率密度。以一个三维联合高斯分布为例(均值向量μ和协方差矩阵Σ),通过Python代码演示了计算X在Y=y和W=w条件下的分布。关键步骤包括:分割协方差矩阵为块矩阵,计算条件均值μ_X|YW = μ_X + Σ_XYΣ_YY⁻¹(y-μ_Y)和条件方差Σ_X|YW = Σ_XX - Σ_XYΣ_YY⁻¹Σ_YX。结果显示,条件分布仍为高斯分布,其参数可通过协方差矩阵的代数运算获得。

2025-06-27 15:02:05 367

原创 完全有界集

摘要:完全有界集(预紧集)是度量空间中对任意ε>0存在有限ε网覆盖的集合。它与有界性、紧性和列紧性密切相关:完全有界集必有界,但逆命题在无穷维空间不成立;在完备空间中,紧集等价于闭且完全有界集。完全有界性保证序列存在柯西子列,而

2025-06-26 23:11:37 33

原创 可数紧集与可数紧空间

本文介绍了拓扑学中的可数紧性概念。可数紧空间要求每个可数开覆盖存在有限子覆盖,是比紧性更弱的性质。文章给出了可数紧集的定义、等价刻画(如序列紧性和Bolzano-Weierstrass性质),并分析了其与紧性的关系(紧空间必可数紧,但逆命题不成立)。通过典型例子(如[0, ω₁)区间)说明了两者的区别,总结了可数紧性的重要性质(闭子集保持性、连续映射不保持性等),最后用表格对比了紧性、可数紧性、序列紧性和Lindelöf性质的关系。

2025-06-26 22:33:32 61

原创 实变与泛函题解-心得笔记【14】

函数与集

2025-06-26 08:16:57 31

原创 JAX study notes[5]

本文介绍了随机向量的分布函数与密度函数概念,并通过Python的JAX库展示了联合密度与边缘密度的计算方法。首先,密度函数定义为随机向量X的偏导数。随后以三维高斯分布为例,演示了如何用JAX计算联合概率密度,并验证协方差矩阵的对称性和正定性。文章

2025-06-25 13:59:29 415

原创 大模型入门

阿里云百炼支持通过API调用大模型,涵盖OpenAI兼容接口、DashScope SDK等接入方式。

2025-06-24 21:17:40 439

原创 拓扑空间心得笔记

拓扑空间

2025-06-23 21:21:56 130

原创 高等概率论题解-心得笔记【15】

拓扑

2025-06-22 23:56:14 76

原创 实变与泛函题解-心得笔记【14】

本文介绍了函数与集合的基本概念及其关系。通过三张示意图(未展示具体内容),文章可能展示了函数映射、集合运算等核心内容。

2025-06-22 15:06:37 143

原创 实变与泛函题解-心得笔记【13】

上下限集

2025-06-21 23:39:31 227

原创 JAX study notes[5]

本文介绍了使用JAX实现Softmax分类器的过程。首先阐述了Softmax的参数形式Z=Wx+b,其中W∈R^(k×d),b∈R^k。然后详细展示了JAX实现代码,包括线性层定义、Softmax函数(带数值稳定处理)、模型组合和参数初始化。通过示例演示了前向计算和交叉熵损失函数,并对比了自动微分与手动计算的梯度结果。代码实现了完整的Softmax分类流程,包括模型定义、参数初始化、前向传播和梯度计算。该实现可用于多分类任务,并展示了JAX在深度学习中的简洁应用。

2025-06-21 07:35:41 593

原创 JAX study notes[4]

本文介绍了使用JAX实现softmax函数及其相关应用。首先展示了数值稳定的softmax实现,通过减去最大值防止指数溢出。接着演示了使用jax.vmap处理批量数据,以及交叉熵损失函数的实现和自动求导。

2025-06-20 23:13:38 517

原创 抽象代数题解-心得笔记【19】

对称群

2025-06-19 22:32:59 15

原创 JAX study notes[3]

JAX与Numpy对比分析:JAX提供了类似Numpy的API但效率更高,关键区别在于JAX数组是不可变的(immutable)。

2025-06-19 13:32:53 362

原创 the computation with C++ notes[2]

本文介绍了C++中的类型转换,包括两种主要方式:C风格强制转换和C++风格转换。C++提供了四种特定转换运算符:static_cast用于编译时检查的类型转换(如int转double),dynamic_cast用于运行时多态类型检查

2025-06-18 23:03:37 320

原创 高等概率论题解-心得笔记【14】

开集

2025-06-18 21:24:48 26

lua for windows dll 5.4.2

lua for windows dll 5.4.2

2025-01-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除