poj 2553

原创 2016年08月31日 11:07:56

戳戳戳

题意:
如果一个点 v 能够到达 的所有点 都可以 返回来 到达 v 则称 v 是一个sink点

求 所有的 sink点

思路:
求出度 为 1 的 强连通分量 的 点
tarjan();

然后 没了 看代码

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
//by mars_ch
int n,m,tot;
int dfn[5005],low[5005],stack[5005],belong[5005],out[5005],instack[5005];
int time,top,index;
struct data
{
    int f,t,nxt;
}e[5005*5005];
int first[5005],ans[5005];
void add(int a,int b)
{
    e[++tot].f=a;
    e[tot].t=b;
    e[tot].nxt=first[a];
    first[a]=tot;
}
void tarjan(int x)
{
    dfn[x]=low[x]=++time;
    stack[++top]=x;
    instack[x]=1;
    for(int i=first[x];i!=-1;i=e[i].nxt)
    {
        int v=e[i].t;
        if(!dfn[v])
        {
            tarjan(v);
            low[x]=min(low[x],low[v]);
        }
        else if(instack[v])
        {
            low[x]=min(low[x],dfn[v]);
        }
    }
    if(low[x] == dfn[x])
    {
        ++index;
        while(1)
        {
            int t=stack[top--];
            instack[t]=0;
            belong[t]=index;
            if(t == x) break;
        }
    }
}
int main()
{
    while(scanf("%d%d",&n,&m) && n!=0)
    {
        tot=0,time=0,top=0,index=0;
        memset(first,-1,sizeof(first));
        memset(low,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(out,0,sizeof(out));
        memset(stack,0,sizeof(stack));
        for(int i=1;i<=m;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            add(a,b);
        }
        for(int i=1;i<=n;i++)
        {
            if(!dfn[i]) tarjan(i);
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=first[i];j!=-1;j=e[j].nxt)
            {
                if(belong[i]!=belong[e[j].t])
                {
                    out[belong[i]]++;
                }
            }
        }
        int len=0;
        for(int i=1;i<=n;i++)
        {
            if(!out[belong[i]])
            {
                ans[++len]=i;
            }
        }
        for(int i=1;i<=len;i++)
        {
            printf("%d ",ans[i]);
        }
        puts("");
    }
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

poj 2553 tarjan求强连通(第一道)

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7...

POJ 2553 —— The Bottom of a Graph

原题:http://poj.org/problem?id=2553 题意:给出n个点,m条边的有向图;问有多少个点 v 满足—— v能到u,u也能到v(v能到达的所有点都要能回到v); 思...

POJ 2553The Bottom of a Graph(Tarjan)

题意:我的英语可是一流的。。。(水)。。。没看懂题,看图看明白的。输出出度为0的团的所有元素。(猜的。。过了,说明就猜对了) #include #include #include #inclu...

poj2553 The Bottom of a Graph--Kosaraju算法 & 缩点 & 强连通分量

原题链接:http://poj.org/problem?id=2553 题意:n个点,m对点的关系,定义link点:一个点u所能到达的点,反过来都能到达u,那么点u就是link点。升序输出所...
  • LaoJiu_
  • LaoJiu_
  • 2016年09月10日 14:38
  • 245

POJ 2553 The Bottom of a Graph 强连通分量+缩点 tarjan or kosaraju

题目的意思是求有向图中满足“自己可达的顶点都能到达自己”的顶点个数 显然,在一个强连通分量中,每个点都符合要求,但是 如果强连通分量中有某个点跟外面的某个点相连了,这个强连通分量就不符合要求了,很显...

http://poj.org/problem;jsessionid=57CE7F39567FF9BFA128CDB4A2E8D728?id=2553

第一道强连通分量题,tarjan算法+缩点,,输出出度为0的顶点。。。 //强连通分量为搜索树中的一颗子树 //stack自定义栈,dfn(u)为结点u的次序编号 //low(u)为u或u的子树能够...

ZOJ1979 POJ2553 The Bottom of a Graph,经典Tarjan

经典的强连通分量题,我用了Tarjan算法+缩点。把每个强连通分量缩点,求出每个点的出度。所谓的bottom,就是那些出度为0的强连通分量,对于所有出度不为零的连通分量里的点,都可以到达bottom中...
  • neofung
  • neofung
  • 2011年09月25日 01:51
  • 510

poj 2553 tarjan算法

 题目链接:http://poj.org/problem?id=2553题意描述:给定图,让求其中的sinks,即输出这样一些点,如果可以从这个点u到达图中的另一个点v,则一定也存在路径可以从点v到达...

poj2553The Bottom of a Graph【tarjan中SCC出度是1】

Description We will use the following (standard) definitions from graph theory. Let V be a nonemp...

POJ2553————The Bottom of a Graph(tarjan算法)

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 2553
举报原因:
原因补充:

(最多只允许输入30个字)