关闭

dynamica programming coins in line

272人阅读 评论(0) 收藏 举报
分类:

There are n coins in a line. (Assume n is even). Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins.

  1. Would you rather go first or second? Does it matter?
  2. Assume that you go first, describe an algorithm to compute the maximum amount of money you can win.

Let us look one extra step ahead this time by considering the two coins the opponent will possibly take, Ai+1 and Aj. If the opponent takes Ai+1, the remaining coins are { Ai+2 … Aj }, which our maximum is denoted by P(i+2, j). On the other hand, if the opponent takes Aj, our maximum is P(i+1, j-1). Since the opponent is as smart as you, he would have chosen the choice that yields the minimum amount to you.

Therefore, the maximum amount you can get when you choose Ai is:

P1 = Ai + min { P(i+2, j), P(i+1, j-1) }

Similarly, the maximum amount you can get when you choose Aj is:

P2 = Aj + min { P(i+1, j-1), P(i, j-2) }

Therefore,

P(i, j) = max { P1, P2 }
        = max { Ai + min { P(i+2, j),   P(i+1, j-1) },
                Aj + min { P(i+1, j-1), P(i,   j-2) } }

Although the above recurrence relation could be implemented in few lines of code, its complexity is exponential. The reason is that each recursive call branches into a total of four separate recursive calls, and it could be n levels deep from the very first call). Memoization provides an efficient way by avoiding re-computations using intermediate results stored in a table. Below is the code which runs in O(n2) time and takes O(n2) space.

Edit:
Updated code with a new function printMoves which prints out all the moves you and the opponent make (assuming both of you are taking the coins in an optimal way).


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:457727次
    • 积分:7827
    • 等级:
    • 排名:第2642名
    • 原创:377篇
    • 转载:305篇
    • 译文:0篇
    • 评论:27条
    文章分类
    最新评论