运动检测的一般方法
目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用 高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运动物体,从而达到运动物体检测的目的
单分布高斯背景模型
单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足:
IB(x,y) ~ N(u,d)
这样我们的背景模型的每个象素属性包括两个参数:平均值u 和 方差d。
对于一幅给定的图像G,如果 Exp(-(IG(x,y)-u(x,y))^2/(2*d^2)) > T,认为(x,y)是背景点,反之是前景点。
同时,随着时间的变化,背景图像也会发生缓慢的变化,这时我们要不断更新每个象素点的参数
u(t+1,x,y) = a*u(t,x,y) + (1-a)*I(x,y)
这里,a称为更新参数,表示背景变化的速度,一般情况下,我们不更新d(实验中发现更不更新d,效果变化不大)。
高斯混合模型是用于背景提取的方法,OpenCV的cvaux中cvbgfg_gaussmix.cpp文件根据文献An improved adaptive background mixture model for real-time tracking with shadow中提供的方法编写了高斯混合模型函数。其中定义了CvGaussBGModel类用于存放高斯混合模型的各个参数。我用OpenCV使用高斯混合模型函数分以下几步:
1。在程序初始化部分定义高斯混合模型参数CvGaussBGModel* bg_model=NULL;在读取第一帧图像(背景图像)时,进行高斯背景建模bg_model = (CvGaussBGModel*)cvCreateGaussianBGModel(image, 0);image可以是灰度图象也可以是彩色图像。接下来再读取当前帧时,更新高斯模型
regioncount=icvUpdateGaussianBGModel(currframe, bg_model );regioncount的含义我不确定,我理解是代表背景中不同颜色区域的个数,这个参数我没有用到,它只是icvUpdateGaussianBGModel函数的返回值。
2。现在bg_model已经保存了经过高斯混合模型分类后的结果,bg_model->background保存了背景图像,bg_model->foreground保存了前景图像。
#include <stdio.h>
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <cvaux.h>//必须引此头文件
int main( int argc, char** argv )
{
IplImage* pFrame = NULL;
IplImage* pFrImg = NULL;
IplImage* pBkImg = NULL;
CvCapture* pCapture = NULL;
int nFrmNum = 0;
cvNamedWindow("video", 1);
cvNamedWindow("background",1);
cvNamedWindow("foreground",1);
cvMoveWindow("video", 30, 0);
cvMoveWindow("background", 360, 0);
cvMoveWindow("foreground", 690, 0);
//打开视频文件
pCapture = cvCaptureFromFile("bike.avi");
//pCapture = cvCaptureFromFile("20120726.avi");
if( !pCapture )
{
fprintf(stderr, "Can not open video file %s\n", argv[1]);
return -2;
}
//初始化高斯混合模型参数
CvGaussBGModel* bg_model=NULL;
while(pFrame = cvQueryFrame( pCapture ))
{
nFrmNum++;
if(nFrmNum == 1)
{
pBkImg = cvCreateImage(cvSize(pFrame->width, pFrame->height), pFrame->depth, pFrame->nChannels /*IPL_DEPTH_8U,3*/);
pFrImg = cvCreateImage(cvSize(pFrame->width, pFrame->height), IPL_DEPTH_8U,1);
//高斯背景建模,pFrame可以是多通道图像也可以是单通道图像
//cvCreateGaussianBGModel函数返回值为CvBGStatModel*,
//需要强制转换成CvGaussBGModel*
bg_model = (CvGaussBGModel*)cvCreateGaussianBGModel(pFrame, 0);
}
else
{
//更新高斯模型
cvUpdateBGStatModel(pFrame, (CvBGStatModel *)bg_model );
//pFrImg为前景图像,只能为单通道
//pBkImg为背景图像,可以为单通道或与pFrame通道数相同
cvCopy(bg_model->foreground,pFrImg,0);
cvCopy(bg_model->background,pBkImg,0);
cvThreshold(pFrImg, pFrImg, 128, 255, CV_THRESH_BINARY_INV);
//把图像正过来
// pBkImg->origin=1;
// pFrImg->origin=1;
cvShowImage("video", pFrame);
cvShowImage("background", pBkImg);
cvShowImage("foreground", pFrImg);
if( cvWaitKey(100) >= 0 )
break;
}
}
//释放高斯模型参数占用内存
cvReleaseBGStatModel((CvBGStatModel**)&bg_model);
cvDestroyWindow("video");
cvDestroyWindow("background");
cvDestroyWindow("foreground");
cvReleaseImage(&pFrImg);
cvReleaseImage(&pBkImg);
cvReleaseCapture(&pCapture);
return 0;
}