漫谈 Clustering (3): Gaussian Mixture Model

 by pluskid, on 2009-02-02, in Machine Learning     196 comments 本文是“漫谈 Clustering 系列”中的第 4 篇,参见本系列的其他文章。 上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的...

2018-11-15 18:23:12

阅读数 82

评论数 0

数据挖掘十大算法----EM算法(最大期望算法)

概念 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。 最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。 可...

2018-11-15 18:22:37

阅读数 67

评论数 0

聚类(1)——混合高斯模型 Gaussian Mixture Model

聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model  聚类(2)----层次聚类 Hierarchical Clustering  聚类(3)----谱聚类 Spectral Clustering -----------...

2018-11-15 18:22:07

阅读数 195

评论数 0

(EM算法)The EM Algorithm

   EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。 下面主要介绍EM的整个推导过程。 1. Jensen不等式       回...

2018-11-15 18:21:40

阅读数 52

评论数 0

AttributeError: '_csv.reader' object has no attribute 'next' 我在使用pyhon3.4运行以下代码时报错:AttributeError:

AttributeError: '_csv.reader' object has no attribute 'next' 我在使用pyhon3.4运行以下代码时报错:AttributeError: '_csv.reader' object has no attribute 'next' ...

2018-11-15 18:21:13

阅读数 44

评论数 0

【Python错误】windows下使用pip/easy_install提示Fatal error in launcher: Unable to create process using...

windows下的python安装完成后,会在python的安装目录scripts下生成几个exe文件,其中包括easy_install和pip, 我们将上述路径添加到系统的环境变量后,在正常情况 下是可以使用,easy_install等工具的,但是在64位的系统中会出现类似下面的错误: C...

2018-11-15 18:20:49

阅读数 129

评论数 0

奇异值分解(SVD)原理详解及推导

 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513     在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Si...

2018-11-15 18:20:20

阅读数 33

评论数 0

KNN与K-Means的区别

Wikipedia上的 KNN词条 中有一个比较经典的图如下:   KNN的算法过程是是这样的: 从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。 如果K=3,那么离绿色点最近的有2个红...

2018-11-15 18:19:50

阅读数 42

评论数 0

数据挖掘十大算法之决策树详解(1)

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参见文献【1】。本博客已经介绍过的...

2018-11-15 18:19:20

阅读数 86

评论数 0

数据挖掘十大算法之CART详解

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参见文献【1】。本博客已经介绍过的...

2018-11-15 18:18:36

阅读数 49

评论数 0

轻松看懂机器学习十大常用算法

通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。 每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。 以后有时间再对单个算法做深入地解析。 今天的算法如下: 决策树 随机...

2018-11-14 18:04:19

阅读数 84

评论数 0

浅谈对主成分分析(PCA)算法的理解

以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识。本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会。 主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空...

2018-11-14 18:03:36

阅读数 120

评论数 0

主成分分析PCA算法:为什么去均值以后的高维矩阵乘以其协方差矩阵的特征向量矩阵就是“投影”?

这是从网上看到的PCA算法的步骤: 第一步,分别求每列的平均值,然后对于所有的样例,都减去对应的均值。 第二步,求特征协方差矩阵。 第三步,求协方差的特征值…显示全部 关注者 1,218 被浏览 78,113 关注问题写回答 ​添加评论 ​分享 ​邀请回答 ​ 22 个回答 ...

2018-11-14 18:03:04

阅读数 311

评论数 0

机器学习必知的15大框架

不管你是一个研究人员,还是开发者,亦或是管理者,想要使用机器学习,需要使用正确的工具来实现。本文介绍了当前最流行15个机器学习框架。   机器学习工程师是开发产品和构建算法团队中的一部分,并确保其可靠、快速和成规模地工作。他们和数据科学家密切合作来了解理论知识和行业应用。数据专家和机器学习...

2018-11-14 18:02:00

阅读数 52

评论数 0

三个角度看SVM(1)——最大间隔分类器

“横看成岭侧成峰,远近高低各不同。” 支持向量机(Support Vector Machine, SVM)作为一个被广泛应用的有监督机器学习算法,网络上对它的介绍数不胜数,其中更有不少好文佳作。本文与它们的区别在于:并不着重于“教程式”地对SVM进行系统性介绍,而是希望从三个不同的角度对这个算法...

2018-11-14 18:01:16

阅读数 70

评论数 0

支持向量机(SVM)

断断续续看了好多天,赶紧补上坑。 感谢july的 http://blog.csdn.net/v_july_v/article/details/7624837/ 以及CSDN上淘的比较正规的SMO C++ 模板代码。~LINK~   1995年提出的支持向量机(SVM)模型,是浅层学习中较新...

2018-11-14 18:00:37

阅读数 72

评论数 0

如何理解 95% 置信区间?

对于置信区间一直不了解,很难懂,哪位大神可以通俗易懂地解释一下,最好举个例子,谢谢! 关注者 3,198 被浏览 456,107 关注问题写回答 ​3 条评论 ​分享 ​邀请回答 ​ 85 个回答 默认排序​ 马同学 看图学数学,公众号:matongxue314 1...

2018-11-14 17:59:36

阅读数 1445

评论数 0

机器学习、期望风险、经验风险与结构风险之间的关系

在机器学习中,通常会遇到期望风险、经验风险和结构风险这三个概念,一直不知道这三个概念之间的具体区别和联系,今天来梳理一下: 要区分这三个概念,首先要引入一个损失函数的概念。损失函数是期望风险、经验风险和结构风险的基础。 损失函数是针对单个具体的样本而言的。表示的是模型预测的值与样本真实值之间的...

2018-11-14 17:58:19

阅读数 46

评论数 0

计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接

提示:本文为笔者原创,转载请注明出处:blog.csdn.net/carson2005         以下链接是本人整理的关于计算机视觉(ComputerVision, CV)相关领域的网站链接,其中有CV牛人的主页,CV研究小组的主页,CV领域的paper,代码,CV领域的最新动态,国内的应...

2018-11-14 17:57:30

阅读数 95

评论数 0

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com。也可以加我的微博: @leftnoteasy 前言:     上一次...

2018-11-14 17:55:29

阅读数 77

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭