自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 OpenNI2获取华硕XtionProLive深度图和彩色图并用OpenCV显示

使用OpenNI2打开XtionProLive时有个问题,彩色图分辨率无论如何设置始终是320*240,深度图倒是可以设成640*480,而OpenNI1.x是可以获取640*480的彩色图的。彩色图配准到彩色图后的深度图1:1融合图代码:#include #include #include #include

2014-07-02 15:41:10 8981

原创 OpenNI1.5获取华硕XtionProLive深度图和彩色图并用OpenCV显示

华硕XtionPro类似Kinect,都是体感摄像机,可捕捉深度图和彩色图,如图:

2014-07-02 11:46:14 6362

转载 mxArray数据类型

1 、数据类型mxArray的操作 在上节的Matlab引擎函数中,所有与变量有关的数据类型都是mxArray类型。数据结构mxArray以及大量的mx开头的函数,广泛用于Matlab 引擎程序和Matlab C数学库中。mxArray是一种很复杂的数据结构,与Matlab中的array相对应,我们只需熟悉Matlab的array类型和几个常用的mxArray函数即可。在VC中,所

2014-05-20 16:49:21 2530

转载 Matlab以MEX方式调用C源代码

如果我有一个用C语言写的函数,实现了一个功能,如一个简单的函数:double add(double x, double y){return x + y;} 现在我想要在Matlab中使用它,比如输入: >> a = add(1.1, 2.2)    3.3000要得出以上的结果,那应该怎样做呢?解决方法之一是要通过使用ME

2014-05-20 16:32:58 2211

原创 关于DPM(Deformable Part Model)算法中模型可视化的解释

DPM源码(voc-release)中的模型可视化做的还算相当炫酷的,可以让我们直观的看到训练好的模型,甚至我们不用去做模型的评价,直接根据肉眼的观察,就能大致了解一个目标训练的好不好,比如我训练一个人体模型,那他的可视化图当然就是越接近人体越好。

2014-05-16 18:58:14 9431 7

原创 关于DPM(Deformable Part Model)算法中模型结构的解释

含有n个部件的目标模型可以形式上定义为一个(n+2)元组:(F0,P1,..., Pn, b),F0是根滤波器,Pi是第i个部件的模型,b是表示偏差的实数值。每个部件模型用一个三元组定义:(Fi,vi, di),Fi是第i个部件的滤波器;vi是一个二维向量,指定第i个滤波器的锚点位置(anchor position,即未发生形变时的标准位置) 相对于根的坐标;di是一个四维向量,指定了一个二次函数的参数,此二次函数表示部件的每个可能位置相对于锚点位置的变形花费(deformation cost)。

2014-05-16 15:56:14 10171 14

原创 用DPM(Deformable Part Model,voc-release3.1)算法在INRIA数据集上训练自己的人体检测模型

用DPM(Deformable Part Model,voc-release3.1)算法在INRIA数据集上训练自己的人体检测模型

2014-05-13 12:10:03 14307 59

原创 在windows下运行Felzenszwalb的Deformable Part Model(DPM)源码voc-release3.1来训练自己的模型

我的环境DPM源码版本:voc-release3.1VOC开发包版本:VOC2007_devkit_08-Jun使用的训练数据集:VOC2007Matlab版本:MatlabR2012bc++编译器:VS2010系统:Win732位 (1) 修改globals.m中的一些全局变量cachedir= 'D:\DPMtrain\VOCCache\';% 训练好的

2014-04-15 15:02:41 19219 187

原创 在Windows下运行Felzenszwalb的star-cascade DPM(Deformable Part Models)目标检测Matlab源码

可变形部件模型Deformable Part Models(DPM)是非常经典的目标检测算法,由Felzenszwalb提出,本文介绍如何在windows下运行Felzenszwalb给出的DPM算法的star-cascade版本voc-release4.01-star-cascade,相比于基本版本voc-release4.01,star-cascade版本增加了PCA降维,检测速度可提高十几倍。

2014-03-06 22:18:42 13469 38

翻译 利用RGB-D数据进行人体检测 People detection in RGB-D data

人体检测是机器人和智能系统中的重要问题。之前的研究工作使用摄像机和2D或3D测距器。本文中我们提出一种新的使用RGB-D的人体检测方法。我们从HOG( Histogram of OrientedGradients)描述子获得灵感,设计了一个在稠密深度数据中检测人体的方法,叫做深度方向直方图HOD(Histogram of Oriented Depths)。HOD对局部深度变化的方向进行编码,依靠在预知深度信息的尺度空间的搜索来获得检测过程的3倍加速。随后我们提出了Combo-HOD,一个联合了HOD和HOG

2014-02-21 21:35:20 14212 9

翻译 使用判别训练的部件模型进行目标检测 Object Detection with Discriminatively Trained Part Based Models

本文介绍了一个基于混合多尺度可变形部件模型(mixtures of multiscale deformable part model)的目标检测系统。此系统可以表示各种多变的目标并且在PASCAL目标检测挑战赛上达到了目前最优结果(state-of-the-art)。虽然可变形部件模型现在很流行,但它的价值并没有在类似PASCAL这种较难的测试集上进行展示。此系统依赖于使用未完全标注(partially labeled)的样本进行判别训练的新方法。我们提出了一种间隔敏感(margin-sensitive)的

2014-01-21 15:58:33 40453 32

转载 凸优化和非凸优化

数学中最优化问题的一般表述是求取,使,其中是n维向量,是的可行域,是上的实值函数。凸优化问题是指是闭合的凸集且是上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非凸的最优化问题。其中,是 凸集是指对集合中的任意两点,有,即任意两点的连线段都在集合内,直观上就是集合不会像下图那样有“凹下去”的部分。至于闭合的凸集,则涉及到闭集的定义,而闭集的定义又基于开集,比较抽象,不赘述,这里可以

2014-01-07 11:47:34 13725 1

原创 在Windows下运行Felzenszwalb的Deformable Part Models(voc-release4.01)目标检测matlab源码

可变形部件模型Deformable Part Models是目前最好的目标检测算法,由Felzenszwalb提出,本文介绍如何在Windows下运行Felzenszwalb的Deformable Part Models(voc-release4.01)目标检测matlab源码

2013-12-26 09:59:59 14439 33

原创 有关可变形部件模型(Deformable Part Model)的一些说明

关于目标检测中的可变形部件模型(Deformable Part Model)的一些说明

2013-12-24 18:31:06 20767 22

翻译 判别训练的多尺度可变形部件模型 A Discriminatively Trained, Multiscale, Deformable Part Model

本文介绍了一种用于目标检测的判别训练的多尺度可变形部件模型。我们的系统在平均精度上达到了2006 PASCAL 人体检测竞赛中最优结果的两倍,同样比2007 PASCAL目标检测比赛中20个类别中的10个的最优结果都要好。此系统非常依赖于可变形部件模型。随着可变形部件模型逐渐流行,它的价值并没有在类似PASCAL的较难的数据集上被展示。我们的系统还依赖于判别训练的新方法。我们将一种挖掘难例(Hard Negative Example)的间隔敏感方法与隐藏变量SVM(Latent variable SVM)结

2013-12-24 18:02:40 21256 20

翻译 基于轮廓线索的实时人体检测 Real-Time Human Detection Using Contour Cues

本文提出了一种实时并且精准的人体检测架构C4。C4在目前最高精确度下可以达到20帧每秒的检测速度,并且是在只使用一个处理线程和不使用GPU等硬件的情况下达到的。能达到实时而精确的检测源于以下两点:第一,相邻像素差值的符号是描述轮廓的关键信息;第二,CENTRIST描述子非常适合做人体检测,因为它编码了符号信息并且可以隐式地表达全局轮廓。使用CENTRIST描述子和线性分类器,我们提出了一种不需要显式生成特征向量的计算方法,它不需要图像的预处理或特征向量的归一化,只需要O(1)时间去测试一个图片区域。C4也非

2013-12-10 19:24:28 18049 8

原创 利用FinalData恢复shift+delete误删的文件

FinalData和之前找的几款软件所不同的地方在于,它不仅能恢复文件,还能查看文件损坏级别并进行受损恢复。

2013-12-05 10:06:01 5232 1

原创 用初次训练的SVM+HOG分类器在负样本原图上检测HardExample

难例(Hard Example)就是分错类的负样本,将难例加入负样本集合进行二次训练就是告诉分类器:“这些是你上次分错类的,要吸取教训,改正错误”

2013-11-14 10:35:26 22173 23

原创 自己训练SVM分类器进行HOG行人检测

正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体。负样本是从不包含人体的图片中随机裁取的,大小同样是64*128。SVM使用的是OpenCV自带的CvSVM类。首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵,对应的要有一个指定每个特征向量的类别的类标向量,输入SVM中进行训练。训练好的SVM分类器保存为XML文件,然后根据其中的支持向量和参数生成OpenCV中的HOG描述子可用的检测子参数,再调用OpenCV中的多

2013-11-13 22:51:37 51114 194

原创 从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本

进行行人检测的分类器训练时,负样本是从完全不包含人体的图片中随机剪裁出来的,下面程序的目的就是这个

2013-11-13 22:13:59 10236 17

原创 利用TinyXML读取VOC2012数据集的XML标注文件裁剪出所有人体目标保存为文件

PASCAL VOC目标检测数据集(The PASCAL Visual Object Classes)所以如果想用这个数据集做某种目标识别的训练集的话,需要先从中裁出需要的目标。下面这个程序就是这个目的,其中用到了TinyXML这个简单易用的XML解析器

2013-11-13 22:04:20 5072 8

原创 OpenCV读入图片序列进行HOG行人检测并保存为视频

OpenCV读入图片序列进行HOG行人检测并保存为视频

2013-11-13 21:42:58 7345 21

原创 OpenCV2.4.4实现HOG行人检测

利用OpenCV中默认的SVM参数进行HOG行人检测,默认参数是根据Dalal的方法训练的。

2013-11-13 21:09:19 5426

原创 OpenCV imshow()之后没有waitKey()无法显示图像

OpenCV imshow()之后没有waitKey()无法显示图像

2013-11-10 15:58:18 12318 1

转载 TinyXML快速入门(一)(二)(三)

xml文件本质就是小型的数据库,换个角度来说就是,你对数据库有什么操作你对xml文件就应能实现什么操作。一般而言,对数据库的操作包括以下几种:新建数据库、查询数据库、修改数据库和删除数据库。那么对应xml文件就是新建xml文件、查询xml文件的指定节点的值,修改xml文件中节点的值和删除xml文件中节点的值。首先我们认识一下xml文件有哪几种形式。下面我列出一些常用的xml文件的形式:

2013-11-05 21:02:30 2384 1

翻译 HOG:用于人体检测的梯度方向直方图 Histograms of Oriented Gradients for Human Detection

我们研究了视觉目标检测的特征集问题,并用线性SVM方法进行人体检测来测试,通过与当前的基于边缘和梯度的描述子进行实验对比,得出方向梯度直方图(Histograms of Oriented Gradient,HOG)描述子在行人检测方面表现更加突出。我们研究了计算过程中每一阶段的影响,得出小尺度梯度(fine-scale gradients)、精细方向采样(fine orientation binning)、粗糙空域抽样(coarse spatial binning)以及重叠描述子块的局部对比度归一化(loc

2013-11-02 17:49:10 33460 17

原创 失眠的感觉

现在是凌晨3点,我又一次失眠了。

2013-10-22 04:51:50 2864 4

转载 利用HOG特征进行人体检测

1、HOG特征:       方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dal

2013-10-21 21:22:59 5088 4

原创 VS2010编译配置Blitz-0.9

Blitz是基于C++ template高效数值计算程序库.

2013-10-17 19:41:01 2557

原创 史蒂芬·金《肖申克的救赎》读后感

记住,“希望”是个好东西,也许是世间最好的东西,好东西永远不会消逝的。Remember that hope is a good thing, maybe the best of things, and no good thing ever dies.

2013-10-15 21:19:13 2661

原创 路遥《平凡的世界》读后感

永远把艰辛的劳动看作是生命的必要,即使没有收获的指望,也心平气静地继续耕种。书中描写的都是最普通的人,他们遭受了生活中各种各样的苦难,但他们都没有放弃,坚强的与苦难抗争,他们是平凡的世界中不平凡的人。

2013-10-06 21:07:34 3117 4

翻译 VSAM:视频监控系统 A System for Video Surveillance and Monitoring

VSAM可自动解析场景中的人和车,检测目标并按语义分类,如人、人群、车,以及在此基础上的行为分析,如走动、奔跑。利用VSAM,单个人即可监控复杂区域,跟踪多个人、车以及识别其活动。

2013-10-06 21:04:12 4145

原创 跟着老爸练字

老爸说过,如果字写得好,别人会从第一印象上对你这个人刮目相看。

2013-10-05 12:22:18 1929

原创 2013年上半年总结

研究生的第二个学期,总共只有两三门课,所以我们也被拉进了课题组。还是改进之前的国土资源监控系统,这次我们提出了一些优化改进的方法,之前用MFC做的,这次改成了用Qt做,开始参加每周一次的组会。大概用了两个月的时间搭好了系统的框架,然后开始研究一些视觉算法,首先就是SIFT,目的是为了图像拼接,前前后后搞了一个多月,然后七月初被派到深圳。    到深圳后本来想继续研究SIFT的改进算法——S

2013-10-05 12:12:13 1448

原创 2013年9月第1次面试&算法讲座(主讲人:July & 曹鹏博士)

2013年9月第1次面试&算法讲座(主讲人:July & 曹鹏博士)

2013-09-18 20:27:13 4672

转载 YUV420P转换为RGB32格式

从网络摄像机中获取的帧数据是YUV420P格式的,而我们处理图像需要RGB格式,在网上找了一段将YUV420P格式的帧转换为RGB的代码。// 转换 YV12 到 RGB24// pYUV 的大小 (3 * iWidth * iHeight / 2)// pRGB 的大小 (3 * iWidth * iHeight)// 如果成功返回 true, 否则 falsebool YV12_t

2013-08-16 15:57:38 3540

转载 BMP文件详解

说到图片,位图(Bitmap)当然是最简单的,它Windows显示图片的基本格式,其文件扩展名为*.BMP。在Windows下,任何各式的图片文件(包括视频播放)都要转化为位图个时候才能显示出来,各种格式的图片文件也都是在位图格式的基础上采用不同的压缩算法生成的(Flash中使用了适量图,是按相同颜色区域存储的)。一、下面我们来看看位图文件(*.BMP)的格式。位图文件主要分为如下3个部分

2013-08-06 15:58:48 1656

转载 inet_addr和inet_aton

inet_addr的功能是将一个ip地址字符串转换成一个整数值。一般的IP地址串格式为:'a.b.c.d'分成四段。但是也会有分为1、2或3段的格式。下面我们来看看WIN2K下inet_addr函数的源码:[cpp] view plaincopyunsigned long PASCAL  inet_addr(      IN cons

2013-07-31 18:05:23 1989

原创 SIFT算法与SURF算法特征检测效率对比

SIFT和SURF算法都是特征检测中较常用的算法,SURF是对SIFT的一种改进,尤其在效率上有明显提升。下面的实验给出了SIFT算法和SURF算法在特征检测效率上的对比:

2013-07-17 17:11:03 9472 5

原创 有栖川有栖《马来铁道之谜》读后感

这篇文章是从日本推理作家协会奖获奖作品中找的,是2003年第56届的两篇获奖作品之一,看之前先查了一下资料,感觉挺有意思的,本身对火车挺感兴趣,而且内容介绍上说向读者挑战超完美密室,引起我很大兴趣。    故事发生在马来西亚的金马伦高原,看完后也上网查了查,风景确实不错。文中的第一人称叙述者就是作者自己,名字就叫有栖川有栖,身份也是一个推理作家,但案件的侦破不是靠作者,而是和作者一起去旅游

2013-07-13 19:40:40 1766

提示
确定要删除当前文章?
取消 删除