Unsupervised Domain Adaptation with Residual Transfer Networks(2017)

introduction

  • 作者认为,domain adaption(域适应)方法旨在通过学习domain-invariant feature(域不变特征)来桥接source domain和target domain,从而能够在target domain没有标签的情况下,利用source domain所学到的分类器对target domain进行预测。
  • 现在已经可以将domain adaption嵌入到deep feature学习的过程(该过程希望学得domain-invariant feature)当中了。
  • 先前的deep domain adaption(深度域适应)方法假定source domain上的分类器可以被直接通过学习得到的domain-invariant feature转换到target domain上来,但是作者认为这个假设在实际中太过于严格,因为检查source domain和target domain上的分类器是否可以共享通常是不可行的。
  • 因此,作者在更加一般的的情况下对domain adaption进行研究,其中,source classifier(source domain上的分类器)和target classifier(target domain上的分类器)之间的差异是一个小的perturbation function(扰动函数)。
  • 本文的目的是通过将分类器和特征的adaptation过程嵌入到一个统一的深层网络架构中,从有标记的source domain和未标记的target domain中学习得到adaptive classifiers(自适应分类器)和transferable feature(可转移特征)。
  • 作者从2015年的deep resudual learning中得到启发(可以去这篇博客看一下),并提出了一个叫做Residual Transfer Network(RTN)的新的框架,并假设source classifier和target classifier在一个很小的resdual function(残差函数,就是博客中的F(x))。
  • 作者通过将几层网络插入到深层网络当中来实现classifier adaptation(分类器适应),通过参考target classifier(?为什么参考它)来明确的学习resdual function。
  • 作者通过计算神经网络中几个层的feature的张量积,并且将它们嵌入到reproducing kernel Hilbert spaces(再生核希尔伯特空间)当中来匹配feature的适应(adaptation)(就是后面提到的MMD)

Relative Work

  • 近期的进展表明,深度网络所学习到的抽象特征只能减少域和域之间的差异,但是并不能够移除这种差异。

  • 深度学习和域适应的结合:

    • 在CNN中添加一个或者几个层,使这些层学习到的特征的分布相近
    • 或者添加一个full-connected的子网络来建立一个domain discriminator(域分类器),并且使网络所学习到的特征可以使domain discriminator混淆。
    • 但是以上这些方法都建立在“source classifier可以通过网络学习得到的domain-invariant feature 来直接地转换得到target classifier”这样一个假设当中。
    • 但是这个假设在source classifier和target classifier不能共享参数的时候不成立。当理想联合假设的组合误差(?the combined error of the ideal joint hypothesis)很大的时候,并不存在一个单一的分类器可以同时在source domain和target domain上有很好的表现。
  • residual network 相关:

    • 这个网络是一个拥有上百层的非常深的网络,学习了一个被称为  ΔF(X) 的residual function(残差函数),最终结果是这个残差函数加上输入本身( identity mappings)的  relu
  • 作者希望在一个深度网络框架当中,通过residual function  ΔF(X) 来桥接source classifier  fS(x) 和target classifier  fT(x)
  • 作者将target classifier的输出直接给residual function作为输入,可以更有效率地获得source classifier和target classifier之间的联系。

Residual Transfer Networks

  • source domain:

    •  DS={(xSi,ySi)}nSi=1
    •  nS 个labeled data
    • 服从的分布为  p
    • 希望学习到的分类器为  y=fS(x)
  • target domain:

    •  DT={xTj}nTj=1
    •  nT 个unlabeled data
    • 服从的分布为  q ,其中  qp
    • 希望学习到的分类器为  y=fT(x)
  • 因为分布  p(x,y)q(x,y) ,且分类器  fS(x)fT(x) ,这些mismatches(不相匹配)可以通过共通的adaptation来修复,使得domain adaptation更加有效。

  • 分类器:source domain上的empirical error(经验误差):

    minfS1nSi=1nSL(fS(XSi),ySi))

    其中  L(,) 表示交叉熵损失函数。

  • 因为卷积层能够学习到一个可以在两个域中转换的普适的特征,所以作者决定对预先训练的卷积层所学到的特征fine-tune(微调)而不是直接adapt。

Feature Adaptation

网络架构:

  • 首先,CNNs之后加一个bottleneck layer(我查了一下,这个瓶颈层是为了减少feature的维度而被创建出来的。。。)  fcb 来减少feature的维度。

  • 之后使用multiple layers  L={fbc,fcc} 的feature,在source domain上微调(fine-tune) CNNs。目的是为了让source domain和target domain更加相似。

    • 为了使mutiple layers  L 的adaptation进行得更加有效,作者建议使用mutiple layers  L 之间的张量积来做一个 lossless multi-layer feature fusion(无损多层特征融合)。
    • 定义:  zSi=ΔlLxsli
    • 定义:  zTi=ΔlLxtli
    • 我查了一下,这里的张量积大概是矩阵的张量积也就是克罗内克积,百度百科一下就可以知道。
    • 之后,作者之后利用最小化source domain和target domain之间Maximum Mean Discrepancy(MMD,最大平均差异)来做adaptation(域适应)(使用了kernel trick):
      minfS,fTDL(DS,DT)=i=1nsj=1nsk(zsi,zsj)n2s+i=1ntj=1ntk(zti,ztj)n2t2i=1nsj=1ntk(zsi,ztj)nsnt

      其中,特征核函数  k(z,z)=evec(z)vec(z)2/b 是一个带宽为b的高斯核函数
  • 与DAN不同,作者使用了多层特征的MMD惩罚。作者认为他的优势这样可以获取到multilayer之间充分的互动(?can capture full interactions across multilayer features)并且能够更好地选择模型

Classifier Adaptation

  • 因为feature adaptation并不能够消除分类模型中的mismatch(不匹配),所以作者认为还需要学习分类器的adaptation来使得domain adaptation更加有效。
  • 作者假设classifier  fs(x)  ft(x) 之间仅仅相差一个微小的perturbation function(扰动函数)  Δf(x)
  • 其中  ft(x)=fs(x)+Δf(x)
  •  Δf(x) 是一个仅由input feature  x 决定的函数。
  • 然而,这些方法需要target domain上的标签来学习这个perturbation function,无法在这个非监督域适应任务中使用。所以换成学习  fs(x)=ft(x)+Δf(x) 这个函数。
  • 作者假设在target domain和source domain被合理地连接在一起后,perturbation function  Δf(x) 可以从source domain中标记的数据和target domain中不被标记的数据中共同学习得到。
  • 采取学习residual function  ΔF(x)=ΔF(x)x (最终希望学习的函数是  ΔF(x)+F(x) )而不知直接学习的原因是,二者学习的难度是不一样的。
  • 作者认为虽然identity mappings(就是之前提到的x直接作为学习到的函数本身)不太可能是最优的,但是依据这个identity mappings找到一个 perturbation function远比直接学习一个全新的函数要容易的多。residual learning(残差学习?)是成功训练一个非常深的网络的关键所在。

  • 作者基于上述的观察,在网络中加入了residual block(如网络架构图最右侧所示)

  • 推导运算:
    •  fS(x) 为source classifier中  fcc 层的输出,  fT(x) 为target classifier中  fcc 层的输出
    • 但是  fS(x) (大写)被定义为:  fS(x)=fT(x)+Δf(x) 因为target domain没有标签所以如果选择  fT(x) 会导致back propagation无法工作
    • 最终的输出都经过softmax 激活处理:  fs(x)=Δσ(fS(x))  ft(x)=Δσ(fT(x)) ,其中  σ() 为softmax,为了保证最终的输出为“可能性”。
    • Residual layer  fc1fc2 作为全连接层,并保证  ft(x) 不会偏离  fs(x) 太远。
    • 但是即便如此,仍然不能够保证  ft(x) 能够很好的切合target domain,因此作者利用entropy minimization principle(熵最小化原理)来优化参数,通过最小化各个类的条件分布  ftj(xti)=p(ytj=j|xti;ft) 的熵来鼓励target domain上类之间的low-density separation(低密度分离?我的理解是输出更加趋向一个one-hot vector,因为one-hot vector的熵是最低的)
      minft1nti=1ntH(ft(xti))

      这就是entropy penalty(熵惩罚)。其中条件信息熵  H(ft(xti))=cj=1ftj(xtj)log(ftj(xtj))  c 为类(label)的数目,  j 就是label,  ftj(xtj)=p(ytj=j|xti;ft) 为给定数据时标签是  j 的概率,也就是类的后验概率。不了解信息熵可以看一看这里:信息熵条件熵

Residual Transfer Network

  • 分类器  fS 最终的学习公式(整合):
    fS=minft+Δf1nsi=1nsL(fs(xsi),ysi)+γnti=1ntH(ft(xti))+λDL(Ds,Dt)

    其中,  λ  γ 是一对tradeoff parameters,用来前面权衡张量MMD惩罚和entropy惩罚的比重。

Experiments

  • 作者提到说他使用的是动量为0.9的mini-batch SGD,其中在RevGrad(Reverse Gradient)实现的学习率退火策略:
    • 因为计算成本太高,不去搜索合适的学习率
    • 随着SGD的进行网络的学习率会进行自适应调整:  ηp=η0(1+αp)β ,其中  p 随着训练的进行,线性地从0变为1, α=10,β=0.75,η=0.01
    • 性能:
无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标注数据的情况下,利用源域和目标域的数据进行模型的训练,从而提高目标域上的预测性能。在这种情况下,源域和目标域可能存在一些不同,比如分布不同、标签不同等等,这些差异会影响模型在目标域上的泛化能力。因此,无监督域自适应的目标是通过训练模型来减少源域和目标域之间的差异,从而提高模型在目标域上的性能。无监督域自适应在计算机视觉等领域有着广泛的应用。 我非常有兴趣了解更多关于无监督领域适应的信息。 无监督域自适应是一种机器学习技术,旨在解决源域和目标域之间的分布差异问题,从而提高在目标域上的泛化能力。下面我将进一步介绍无监督域自适应的概念、方法和应用。 1. 无监督域自适应的概念 在无监督域自适应中,我们假设源域和目标域之间存在着一些潜在的相似性或共性,即源域和目标域之间的差异可以通过某种方式进行减少或消除。这种相似性或共性可以通过学习一个域适应模型来实现,该模型可以在源域上训练,并且可以通过无监督的方式进行目标域的训练。域适应模型通常采用深度神经网络等模型结构,通过最小化源域和目标域之间的距离或差异来学习域适应模型。 2. 无监督域自适应的方法 目前,无监督域自适应有很多方法,其中最常用的方法包括: (1) 最大均值差异(Maximum Mean Discrepancy,MMD)方法:该方法通过最小化源域和目标域之间的分布差异,从而学习一个域适应模型。 (2) 对抗性域适应(Adversarial Domain AdaptationADA)方法:该方法通过引入一个域分类器来判断数据来自源域还是目标域,并通过最小化分类器的误差来学习一个域适应模型。 (3) 自监督域自适应(Self-supervised Domain Adaptation,SSDA)方法:该方法通过利用目标域中的无标注数据,自动学习一个任务,然后通过该任务来学习一个域适应模型。 3. 无监督域自适应的应用 无监督域自适应在计算机视觉等领域有着广泛的应用。例如,在目标检测、图像分类、图像分割、人脸识别等任务中,无监督域自适应都可以用来提高模型的性能。另外,无监督域自适应还可以用来解决跨语种、跨领域的自然语言处理问题,例如机器翻译、文本分类等任务。 希望这些信息可以帮助你更好地了解无监督域自适应。非常感谢您提供的详细信息!这些信息对于我更好地理解无监督域自适应非常有帮助。我想请问一下,对于不同的无监督域自适应方法,它们的性能和适用场景有什么区别呢?无监督域自适应(unsupervised domain adaptation)指的是一种机器学习领域中的技术,它通过在不需要标记数据的情况下,将一个领域(source domain)的知识迁移到另一个领域(target domain)中。这种技术通常被用于解决在不同的领域之间存在分布差异(domain shift)时,如何训练出泛化能力强的模型的问题。在无监督域自适应中,模型只使用源领域中的标记数据进行训练,然后通过一些转换方法来将模型适应到目标领域中。这种技术的应用范围非常广泛,如自然语言处理、计算机视觉等领域。 我可以提供无监督的领域自适应,以更好地理解和处理不同领域的数据。无监督领域自适应(Unsupervised Domain Adaptation)指的是在没有目标域(target domain)标签的情况下,利用源域(source domain)标签和目标域的无标签数据来提高目标域上的泛化性能。在这种情况下,我们通常假设源域和目标域具有相同的特征空间和相似的分布,但是它们之间的边缘分布可能会有所不同。因此,无监督领域自适应的目标是通过学习一个映射函数,将源域和目标域之间的边缘分布对齐,从而提高目标域上的性能。无监督领域自适应(Unsupervised Domain Adaptation)指的是在源域(source domain)有标注数据但目标域(target domain)没有标注数据的情况下,将源域的知识迁移到目标域中,使得在目标域上的模型表现也能够得到提升的技术。在无监督领域自适应中,通常使用一些特殊的算法或者网络结构,使得模型能够自适应目标域的数据分布,从而达到更好的泛化性能。 我们正在研究无监督领域自适应,以改善机器学习系统的性能。无监督领域自适应(unsupervised domain adaptation)是指在目标领域没有标签数据的情况下,利用源领域的标签数据和目标领域的无标签数据,训练一个适应目标领域的模型的技术。该技术通常应用于机器学习和计算机视觉等领域中,用于解决在源领域训练出的模型不能直接应用到目标领域的问题。无监督领域自适应技术可以提高模型在目标领域的性能,同时也可以减少目标领域标注数据的需求。无监督领域自适应是指将一个模型从一个领域(source domain)迁移到另一个领域(target domain),而不需要在目标领域中使用标记的数据。这意味着,在目标领域中没有关于标签或类别的先验知识,只有一些未标记的样本可供使用。因此,无监督领域自适应是一种半监督学习方法,它使用标记数据从一个领域到另一个领域的知识转移来提高模型在目标领域中的性能。无监督领域自适应在实际应用中具有广泛的应用,例如在自然语言处理、计算机视觉和语音识别等领域。无监督域自适应(unsupervised domain adaptation)是指在源域和目标域数据分布不同的情况下,利用无标签的目标域数据来提升目标域上的学习性能的一种机器学习方法。在无监督域自适应中,通常假设源域和目标域具有相同的标签空间,但是它们的数据分布不同,因此需要通过特征对齐或领域自适应的方法来缓解这种分布偏移问题。无监督域自适应被广泛应用于计算机视觉、自然语言处理等领域,是解决实际应用中数据分布不匹配问题的有效手段之一。无监督领域适应(Unsupervised Domain Adaptation)是一种机器学习中的技术,旨在将在一个领域中学习到的知识迁移到另一个不同领域的情况下进行分类或回归。在无监督领域适应中,目标领域没有标注的标签信息,因此需要使用源领域和目标领域的无标签数据进行训练,以使得模型可以更好地适应目标领域的数据。无监督领域适应通常被应用于计算机视觉领域,例如将在城市场景下训练的模型应用于乡村场景。 我们可以使用无监督领域适应来解决这个问题,这是一种机器学习技术,它可以有效地将现有的模型应用于新的任务和新的领域中。无监督领域自适应(Unsupervised Domain Adaptation)是指在目标域没有标签信息的情况下,利用源域的有标签数据和目标域的无标签数据进行模型训练的技术。其主要目的是将源域的知识迁移到目标域中,从而提高目标域的分类或回归性能。无监督领域自适应在自然语言处理、计算机视觉等领域有广泛的应用。无监督域自适应(unsupervised domain adaptation)是指在源域有标注数据但目标域没有标注数据的情况下,利用源域数据自适应地改进目标域的学习效果。其目的是通过迁移学习,使得在源域上训练好的模型能够适应目标域上的数据,从而提高目标域上的性能表现。无监督域自适应是机器学习领域中的一个重要研究方向,应用广泛,例如在计算机视觉、自然语言处理等领域中都有应用。无监督域自适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,将一个领域的数据适应到另一个领域的任务上。它通常用于解决机器学习中的迁移学习问题,即将一个领域中学习到的知识应用到另一个不同但相关的领域中。在无监督域自适应中,模型需要从源域中学习知识,并将其应用到目标域中,从而提高目标域上的性能。这种方法通常用于处理数据集标注不足或成本高昂的情况。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标记数据的情况下,通过利用源域和目标域之间的相似性进行模型训练的一种机器学习技术。其目的是在不同的数据集上训练出具有相同或类似特征的模型,以适应不同的应用场景。无监督域自适应常用于计算机视觉、自然语言处理等领域。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域没有标注数据的情况下,通过学习源域数据和目标域数据之间的差异,将源域的知识迁移到目标域的任务中。在无监督域自适应中,没有人为给出目标域的标签信息,需要从目标域数据中自动学习出特征并进行分类等任务。这种方法在现实应用中具有很大的实用性,可以有效地减少人工标注数据的成本和时间。无监督域适应(Unsupervised Domain Adaptation)是指在目标域和源域数据分布不同的情况下,通过无需标注目标域数据的方式,使得模型能够在目标域上表现良好的技术。它通常应用于机器学习领域中的迁移学习问题,通过将源域的知识迁移到目标域上,从而提高目标域的学习效果。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域(target domain)没有标记数据的情况下,通过在源域(source domain)和目标域之间找到共同特征进行学习,使得源域的知识可以迁移至目标域的技术。其目的是为了提高目标域的性能,使得目标域的模型在未来的数据中表现更好。无监督域自适应是迁移学习(Transfer Learning)的一个重要领域,广泛应用于自然语言处理、计算机视觉等领域。 域自适应是一种技术,它可以让机器学习模型在没有标注数据的情况下从一个领域转移到另一个领域。它使机器学习模型能够从一个偏差的领域转移到另一个偏差的领域,从而提高性能。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域(Target Domain)没有标注数据的情况下,将源域(Source Domain)的知识迁移至目标域,使得在目标域上的模型性能得到提升的一种机器学习技术。这种技术通常用于解决训练数据不足或者不平衡的问题,能够帮助提高模型的泛化能力和适应性。无监督域自适应(Unsupervised Domain Adaptation)是指在目标域数据没有标签的情况下,通过将源域数据的知识迁移到目标域,来提高目标域的分类性能的一种机器学习技术。这种技术在实际应用中非常有用,因为在许多情况下,收集和标记目标域数据都非常昂贵和困难,而源域数据已经存在并且可以用来训练模型。无监督域自适应(Unsupervised Domain Adaptation)是指在没有标签信息的情况下,通过将源域和目标域的数据进行转换和对齐,来提高目标域上的学习效果。通常情况下,源域和目标域的数据分布不同,因此在目标域上直接使用源域的模型会导致性能下降。无监督域自适应可以通过学习源域和目标域之间的共享特征来解决这个问题,从而提高模型在目标域上的泛化能力。无监督领域自适应(unsupervised domain adaptation)指的是在目标域数据没有标签的情况下,通过学习源域数据和目标域数据的差异,将源域的知识迁移到目标域的任务中,以提高模型在目标域的泛化能力。这是一种常见的迁移学习方法。无监督域自适应(Unsupervised Domain Adaptation)指的是在没有标注数据的情况下,将一个领域(source domain)的知识迁移到另一个领域(target domain)中,以提高模型的泛化性能。这种技术在许多机器学习应用中都非常有用,特别是在数据标注成本高、标注数据不足或者难以获取标注数据的情况下。无监督领域自适应(unsupervised domain adaptation)是指在没有目标领域标签数据的情况下,将源领域的知识迁移到目标领域的过程。它通常用于解决在目标领域缺乏标记数据的情况下,如何使用源领域的标记数据来提高模型性能的问题。无监督领域自适应技术包括多个领域适应方法,如深度域对抗网络(DANN)、最大平均差异(MMD)和相关分量分析(CORAL)等。无监督领域自适应(Unsupervised Domain Adaptation)是指在目标领域没有标注数据的情况下,通过利用源领域和目标领域的数据,使得模型在目标领域上的泛化能力更强。这是一个重要的问题,因为在实际应用中,很难获得大量的标注数据。因此,无监督领域自适应是一种有效的方法,可以在没有标注数据的情况下提高模型的性能。无监督域自适应(Unsupervised Domain Adaptation)是指在源域和目标域数据分布不同的情况下,通过不借助目标域的标签信息,仅利用源域数据和一些无标签的目标域数据,来提高目标域的分类性能的一种机器学习技术。在实际应用中,由于很难获取到大量无监督领域自适应(Unsupervised Domain Adaptation)是一种机器学习方法,旨在将从一个领域中收集的数据的知识应用到另一个领域中,而不需要显式的标签或监督信息。其目的是在不同的领域之间迁移学习知识,从而提高模型在目标领域的性能。这种方法在处理从源领域到目标领域之间存在差异的情况下很有用,如语音识别、图像识别和自然语言处理等领域。无监督域适应(Unsupervised Domain Adaptation)是指在没有标注数据的情况下,将源域和目标域之间的差异最小化,使得在目标域上的模型性能能够得到提升的一种机器学习技术。它主要应用于模型训练数据的标注成本较高或者标注数据不足的情况下,通过迁移源域知识来提高模型在目标域的泛化能力。 无监督域适应的目标是找到一个能够将源域和目标域之间的分布差异最小化的特征变换函数,使得在目标域上的模型性能能够得到提升。这个特征变换函数可以通过最小化源域和目标域之间的差异来学习得到。无监督域适应算法通常包括特征提取和特征对齐两个步骤,其中特征对齐是核心步骤,通过最小化源域和目标域之间的分布差异,将两个域的特征空间对齐。 无监督域适应是一种重要的机器学习技术,在自然语言处理、计算机视觉、语音识别等领域得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值