MapReduce适合PB级以上海量数据的离线处理 
         
 MapReduce不擅长什么 
  
  
 
  
 MapReduce编程模型 
 
                
           实时计算 
 
 
 
                   像MySQL一样,在毫秒级或者秒级内返回结果 
 
 
 
           流式计算 
 
 
 
                   MapReduce的输入数据集是静态的,不能动态变化 
 
 
 
                   MapReduce自身的设计特点决定了数据源必须是静态的 
 
 
 
           DAG计算 
 
 
 
                   多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出 
 
 
 
           MapReduce将作业job的整个运行过程分为两个阶段:Map阶段和Reduce阶段 
 
 
 
           Map阶段由一定数量的 
  Map Task组成 
 
 
 
                   输入数据格式解析: 
  InputFormat 
 
 
 
                   输入数据处理: 
  Mapper 
 
 
 
                   数据分组: 
  Partitioner 
 
 
 
           Reduce阶段由一定数量的 
  Reduce Task组成 
 
 
 
                   数据远程拷贝 
 
 
MapReduce详解:大数据离线处理的核心机制
        
                  
                  
                  
                  
本文深入探讨了MapReduce在大数据处理中的应用,详细解析了MapReduce的编程模型,包括Map阶段(InputFormat、Mapper、Combiner、Partitioner)和Reduce阶段(Reducer、OutputFormat)。此外,还介绍了MapReduce的内部逻辑、2.0架构以及数据本地性和推测执行机制,展示了其在数据统计、搜索引擎索引构建和各种算法实现等场景中的广泛应用。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					864
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            