【POJ3090】Visible Lattice Points-欧拉函数应用

测试地址:Visible Lattice Points
题目大意:对于一个点 (x,y) ,如果在它和 (0,0) 之间连一条线段,这条线段不经过其他整点(横坐标和纵坐标均为整数的点),我们就称其为“可见的”。 C 个询问,每个询问包含一个参数N,请你求出对于所有 0x,yN ,可见的整点 (x,y) 有多少个。特别地, (0,0) 不可见。
做法:这题需要应用欧拉函数的性质。
经过分析,我们知道对于整点 (x,y) ,如果 gcd(x,y)=1 ,也就是 x y互质时,它就是可见的。分三种情况考虑:1. x>y ;2. x<y ;3. x=y 。对于第一种情况,我们要求出对于每一个 x ,小于它的正整数中有多少个和它互质的数,我们发现这就是欧拉函数φ(x)的定义,那么把它们加起来,满足这种情况的可见点数就为 φ(2)+...+φ(N)+1 (最后这个1是 (1,0) )。同理,满足第二种情况的可见点数也为 φ(2)+...+φ(N)+1 (最后这个1是 (0,1) )。对于第三种情况,很显然只有一个可见点 (1,1) 。所以最后的答案就是: 2(φ(2)+...+φ(N))+3 ,那么用线性筛求出欧拉函数值,然后预处理欧拉函数的前缀和即可 O(1) 解决每个询问。
以下是本人代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int T,N,phi[1010]={0},sum[1010]={0};
bool isprime[1010]={0};

void calc_phi()
{
  isprime[1]=1;
  for(int i=2;i<=1000;i++)
    phi[i]=i;
  for(int i=2;i<=1000;i++)
  {
    if (!isprime[i])
    {
      for(int j=1;i*j<=1000;j++)
      {
        if (j>1) isprime[i*j]=1;
        phi[i*j]=phi[i*j]*(i-1)/i;
      }
    }
  }
  sum[1]=0;
  for(int i=2;i<=1000;i++) sum[i]=sum[i-1]+phi[i];
}

int main()
{
  scanf("%d",&T);
  calc_phi();
  for(int t=1;t<=T;t++)
  {
    scanf("%d",&N);
    printf("%d %d %d\n",t,N,2*sum[N]+3);
  }

  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值