最小二乘法解的矩阵形式推导

本文探讨了最小二乘法的概念,将其定义为一种数据拟合方法。通过矩阵的观点,文章详细介绍了如何利用高数知识和矩阵微积分求解最小二乘法的最极值问题,逐步化简并求导,深入解析了最小二乘法的矩阵形式表达。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小二乘法解的矩阵形式推导

首先,什么是最小二乘?
维基百科给出了一个定义,戳这里

在我看来,最小二乘法是一种数据拟合方法。

我们从矩阵的角度来理解:
首先我们给出一个矩阵中的定义:

R(A)={ Ax|xRn},ARn×n

有了上面的定义之后,我们就可以写出最小二乘问题的矩阵形式:
bR(A),bRn,minxRnAxb2

用bi格高一点的说法来说,就是求在欧几里得空间中以2-范数作为距离,使得向量Ax与b之间距离最小的x。
我们的目标是求:
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值