最小二乘法解的矩阵形式推导
首先,什么是最小二乘?
维基百科给出了一个定义,戳这里
在我看来,最小二乘法是一种数据拟合方法。
我们从矩阵的角度来理解:
首先我们给出一个矩阵中的定义:
R(A)={
Ax|x∈Rn},A∈Rn×n
有了上面的定义之后,我们就可以写出最小二乘问题的矩阵形式:
∃b∉R(A),b∈Rn,minx∈Rn∥Ax−b∥2
用bi格高一点的说法来说,就是求在欧几里得空间中以2-范数作为距离,使得向量Ax与b之间距离最小的x。
我们的目标是求: