GKStrategist

本文介绍GameplayKit中用于回合制游戏的人工智能通用接口——Strategist。包括两种策略类型:详尽搜索最佳行动的GKMinmaxStrategist和概率搜索良好行动的GKMonteCarloStrategist。详细讲解了如何使用这些策略提升游戏AI的表现。

GKStrategist

回合制游戏中的AI通用接口。

概括

GameplayKit提供两种Strategist类型,当然你也可以使用这个协议来实现你自己定义的Strategist。你要提供一个已经实现了GKGameModel, GKGameModelPlayer 和GKGameModelUpdate协议的游戏模型去创建自定义类型,然后使用Strategist的各种方法实现最佳的行动。

选择一种策略(Strategist)

GameplayKit提供了两种Strategist类型:

• GKMinmaxStrategist类型给每一个可能的游戏模型状态数值评分,并执行一个详尽的树搜索找到移动最大的选手同时减少对手得分。这种策略可以产生最佳的游戏性,但需要游戏模型的评分方法,并且性能成本随着游戏复杂度的增加而大大增加。

• GKMonteCarloStrategist类型执行随机获得的最终状态的概率搜索。这种策略并不总是选择最佳的移动方式,但很可能选择好的移动方式,即使是非常复杂的游戏,性能成本也很低。另外蒙特·卡罗方法只关注游戏模式状态是否代表胜利,因此不需要实现计分方法。

使用一个策略(Strategist)

使用一个策略必须要实现以下几个步骤:

1.创建一个描述游戏玩法的模型,实现GKGameModel , GKGameModelPlayer , 和GKGameModelUpdate 协议。

2.选择一个策略(Strategist)类型(已经实现了GKStrategist 协议的),创建一个实例,并设置它的属性来确定游戏行为。

3.将Strategist的gameModel属性指向游戏模型类的实例,它代表游戏的当前状态。

4.使用bestMoveForActivePlayer 方法为当前玩家选择最好的行动,这个方法返回一个移动对象(这是你自定义创建并实现GKGameModelUpdate 协议的实例)。

5.检查移动对象,通过Strategist选择移动。使用gameModelUpdatesForPlayer: 方法创建实例,描述游戏中游戏模型类可能移动的方法,所以检查对象给你所需的信息执行移动。

Topics

指定游戏模型(Specifying the Game Model)

gameModel

代表当前的游戏状态模型。 (必须)

配置一个策略(Configuring a Strategist)

randomSource

当Strategist随机选择一个移动时需要使用的随机数对象。(必须)

bestMoveForActivePlayer

计算并返回当前玩家的最佳移动。 (必须)

关系

继承

NSObject

默认遵守

GKMinmaxStrategist, GKMonteCarloStrategist




内容概要:本白皮书系统探讨了产业大模型的发展现状、技术路径、应用价值与未来挑战,强调大模型正从技术驱动转向需求驱动的第二阶段,广泛应用于政务、金融、医疗、制造、交通、文娱等多个产业场景。书中详细剖析了产业大模型的技术实现环节,包括基础大模型选择、知识增强与任务优化,并提出以“生成”能力为核心赋能产业智慧化,涵盖内容生成、智能问答、数据分析等七大技能模块。同时,白皮书倡导建立科学的评价体系,提出可控性、能力增强、算力性价比、安全性与部署可行性五大核心指标,并结合58个典型案例分析其共性范式与落地逻辑,推动产业大模型健康有序发展。; 适合人群:从事人工智能、数字化转型、产业智能化升级相关工作的企业管理者、技术研究人员、政策制定者及投资机构专业人士。; 使用场景及目标:①帮助产业界识别大模型在降本增效、提升服务体验方面的实际价值;②为技术方提供从通用模型到行业应用的工程化落地路径;③指导政策与标准制定,推动大模型在安全、合规、可控前提下融入核心业务场景。; 阅读建议:建议结合附录中的典型案例进行对照阅读,重点关注不同行业在数据基础、技术适配与商业模式上的实践经验,同时关注大模型在“生成”与“决策”能力之间的演进趋势,以全面把握其产业赋能潜力。
内容概要:本文提出一种基于多智能体深度强化学习(MADDPG)的高速公路可变限速协同控制方法,旨在解决多路段交通协同优化问题。通过将每个路段管控单元建模为智能体,利用MADDPG框架实现集中式训练与分布式执行,智能体间共享状态与动作信息以推测彼此策略,从而达成协同优化。研究建立了马尔科夫决策过程模型,定义了包含速度均值、标准差、流量等信息的4N维状态空间、9级离散限速动作空间及兼顾安全与效率的奖励函数。基于SUMO的仿真实验结果显示,该方法相较无控制场景降低拥堵持续时间69.23%、速度标准差47.96%,相比单智能体DDPG节省50%训练时间并提升7.44%累计回报,验证了其有效性与优越性。; 适合人群:具备一定交通工程或智能控制背景,熟悉强化学习基本概念的研究生、科研人员及从事智慧交通系统开发的工程师;有Python编程和深度学习框架使用经验者更佳。; 使用场景及目标:①应用于高速公路多路段可变限速控制,缓解交通拥堵、提升通行效率与安全性;②为多智能体协同决策在交通管理中的应用提供技术参考;③作为MADDPG算法在实际复杂系统中部署的案例研究。; 阅读建议:理解本文需结合强化学习与交通流理论基础知识,重点关注MADDPG网络架构设计、奖励函数构建及与SUMO的集成方式;建议配合提供的代码实现进行仿真实验,深入掌握算法训练流程与参数调优策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值