GKScene

GKScene

一个容器,使Gameplaykit的对象和Spritekit的Scene发生联系。

概括

当你在Xcode中,在Scene editor中创建SKSpriteKit的scene,Xcode会自动创建一个GKScene对象来管理你添加到场景中的任何GameplayKit对象(实体,组件或路径查找图),并将其与SpriteKit场景内容一起存档。

要使用包含GameplayKit对象的SpriteKit场景,请使用GKScene的sceneWithFileNamed: 方法加载场景文件。 然后,你可以使用实体和图形属性来访问场景中的GKEntity(和关联的GKComponent)对象和GKGraph对象,以及访问场景的SpriteKit内容的rootNode属性。

注意
你附加实体或组件的场景中的任何SpriteKit节点自动具有一个GKSKNodeComponent对象,用于管理节点与其所代表的GKEntity对象之间的关系。

Topics

加载场景文件(Loading a Scene File)

+ sceneWithFileNamed:

加载指定的SpriteKit场景文件,创建包含SpriteKit场景和关联的GameplayKit对象的GKScene对象。

方法SKSpriteKit场景(Accessing the SpriteKit Scene)

rootNode

由GKScene对象管理的SpriteKit场景。

管理实体和组件(Managing Entities and Components)

entities

由场景管理的GameplayKit实体列表。

- addEntity:

将GameplayKit实体添加到由场景管理的实体列表中。

- removeEntity:

从场景管理的实体列表中删除一个GameplayKit实体。

管理寻路图(Managing Pathfinding Graphs)

graphs

由场景管理的寻路图对象列表。

- removeGraph:

从场景管理的图表列表中移除寻路图。

初始化(Initializers)

- addGraph:name:

关系

继承

NSObject

默认遵守

NSCoding, NSCopying


内容概要:本文围绕“MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究”展开,重点利用Copula理论对多个风电场的预测误差进行时空相关性建模,旨在提高风电功率预测的准确性与可靠性。通过MATLAB实现建模过程,充分考虑风电预测误差在时间和空间维度上的统计特性与依赖结构,构建能够刻画复杂非线性相关关系的概率模型。该方法有助于提升高比例可再生能源接入背景下电力系统调度、风险评估与稳定性分析的能力,尤其适用于多风电场协同运行与预测误差不确定性管理场景。文中可能涉及边缘分布拟合、Copula函数选型、参数估计与模型验证等关键技术环节。; 适合人群:具备一定概率统计与电力系统背景知识,熟悉MATLAB编程,从事新能源预测、电力系统规划或风险管理等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多风MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究电场联合预测误差建模,提升区域风电出力预测精度;②支撑电力系统风险评估、储能配置与调度决策,增强电网对风电波动性的适应能力;③复现高水平期刊(如SCI)研究成果,推动学术研究与实际应用结合。; 阅读建议:建议读者结合文中提供的MATLAB代码深入理解Copula建模流程,重点关注边缘分布选择与Copula函数比较,同时可扩展至光伏等其他可再生能源的时空相关性建模研究。
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷序列进行分解,降低非平稳性;再通过SSA优化LSSVM的关键参数,提高预测精度;最后将处理后的各模态分量重构得到最终预测结果。该方法有效提升了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源预测相关工作的工程技术人员;尤其适合正在开展智能优化算法与机器学习在电力负荷预测方向研究的学者。; 使用场景及目标:①用于提升电力系统中短期负荷预测精度,支持电网调度与运行决策【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现);②为研究VMD、SSA、LSSVM等先进算法在时间序列预测中的融合应用提供可复现的技术方案与代码参考;③作为SCI论文复现或科研项目开发的基础模型框架。; 阅读建议:建议读者结合文中涉及的信号分解、智能优化与机器学习理论,逐步调试Matlab代码,理解每一步的数据处理与参数优化逻辑,并尝试在不同数据集上验证模型性能,进一步拓展至风电、光伏等可再生能源出力预测领域。
本研究项目聚焦于毫米波雷达环境感知系统的开发,以1843AOPEVM硬件平台为基础构建点云生成框架。该系统采用快速傅里叶变换相位检测技术实现角度测量,通过频域信号处理将雷达回波转换为三维空间坐标集合。在技术演进过程中,研究团队持续优化系统架构以应对实际应用中的技术挑战。 针对复杂地形环境中的信号干扰问题,项目组于2023年5月提出数据层级的地面杂波抑制方案,计划通过新型滤波函数提升系统在强反射背景下的目标识别能力。该改进措施将配套详细的技术文档说明,确保算法逻辑的透明性和可复现性。 随着研究深入,系统功能模块逐步完善。2023年7月版本规划集成雷达成像组件,旨在通过多维度数据融合提升点云建模精度。此项更新将在相关学术论文正式发表后,于代码托管平台同步发布完整实现方案。同年11月,团队进一步引入压缩感知理论框架,该创新性方法能够显著降低数据采集需求同时保持信号重建质量,相关研究成果已通过学术评审。 需要特别关注的是,2024年6月发布的技術备忘录指出扩展卡尔曼滤波第三版实现存在算法缺陷。研究数据表明,采用位置差分进行速度预估可能引发估计值发散现象,建议在工程应用中采用更稳健的状态估计策略。 本项目完整技术栈涵盖毫米波信号处理、压缩感知理论、动态系统估计等多个前沿领域,形成了从原始信号采集到三维环境重建的完整技术链条。系统实现代码已封装为标准化模块,其命名规范明确体现了毫米波雷达点云生成的核心功能定位。通过持续的技术迭代与算法优化,该研究为自动驾驶、智能感知等应用场景提供了可靠的技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
内容概要:本文介绍了一个用于改进多旋翼无人机动态模拟的模块化仿真环境,基于Matlab和Simulink平台实现,旨在为无人机系统的研究与开发提供灵活、可扩展的仿真工具。该仿真环境涵盖了无人机的动力学建模、控制算法设计与验证等功能,支持如PD控制、路径规划、协同飞行等多种应用场景,并结合具体案例(如AscTec Pelican四旋翼无人机)展示了控制器的设计与仿真效果。文档还列举了多个相关研究方向和技术实现,包括遗传算法路径规划、最优控制、SVPWM模型、风光制氢系统优化等,体现出其在多领域科研仿真中的广泛应用价值。; 适合人群:具备一定Matlab/Simulink编程基础,从事无人机系统仿真、控【UAV】改进的多旋翼无人机动态模拟的模块化仿真环境(Matlab、Simulink实现)制算法研究及相关领域科研工作的研究生、工程师或科研人员;熟悉自动控制、飞行器动力学等相关知识者更佳; 使用场景及目标:①构建多旋翼无人机高精度动态仿真模型;②设计与验证各类控制策略(如PD控制、最优控制);③开展路径规划、协同控制等高级功能的算法开发与测试;④支持学术论文复现与SCI级别科研项目开发; 阅读建议:建议按文档结构逐步学习,结合提供的Matlab代码实例进行实践操作,重点关注动力学建模与控制器设计流程,同时可利用文中提供的网盘资源获取完整仿真模型与算法代码,辅助理解和复现实验结果。
内容概要:本文围绕“基于配电网韧性提升的应急移动电源预配置和动态调度”展开,重点介绍上半部分——MPS(Mobile Power Sources)预配置的理论模型与Matlab代码实现。研究旨在灾害或突发事件下,通过科学预配置应急移动电源,提高配电网在极端情况下的恢复能力与供电可靠性。文中构建了考虑网络拓扑、负荷重要性、路径可达性等因素的优化模型,并采用Matlab进行仿真验证,展示了如何通过优化算法确定MPS的最佳部署位置与容量配置,从而为后续动态调度奠定基础。该工作属于SCI一区级别研究成果的复现,具有较强的工程应用背景与学术参考价值。; 适合人群:电力系统、能源互联网、应急管理等相关领域的研究生、科研人员及工程技术人员,具备一定的优化建模与Matlab编程基础者更佳;; 使用场景及目标:①用于学习和复现高【SCI一区复现】基于配电网韧性提升的应急移动电源预配置和动态调度(上)—MPS预配置(Matlab代码实现)水平电力系统韧性优化论文中的数学建模方法与求解流程;②掌握应急电源在配电网灾后恢复中的预配置策略设计思路;③为开展配电网可靠性提升、灾害应对调度等课题提供技术参考与代码基础; 阅读建议:建议结合文档中提到的完整资源包(含YALMIP等工具)进行代码调试与案例复现,同时参考同类研究如动态调度部分及其他SCI复现内容,以形成对MPS全周期调度问题的系统性理解。
内容概要:本文围绕“动态环境下多无人机系统的协同路径规划与防撞研究”展开,基于Matlab代码实现,重点研究多无人机在复杂动态环境中的协同路径规划算法与防碰撞机制。通过构建合理的数学模型,结合智能优化算法与路径规划策略(如遗传算法、虚拟力法或改进的A*等),实现多无人机系统的高效协同飞行与实时避障,确保任务执行的安全性与效率。文中提供了完整的Matlab仿真代码,支持对算法性能的验证与复现,适用于科研与工程实践。; 适合人群:具备一定Matlab编程基础,从事无人机系统、智能交通、自动【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)化控制、路径规划等相关领域的研究生、科研人员及工程技术人员;熟悉基本优化算法和控制系统原理者更佳; 使用场景及目标:①用于多无人机协同任务(如搜索救援、环境监测、物流配送)中的路径规划与避撞策略设计;②支撑SCI论文复现与算法对比研究;③作为教学案例帮助理解多智能体协同控制的核心思想与实现方法; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注环境建模、路径规划算法设计、冲突检测与规避机制的实现逻辑,并通过仿真实验调试参数以深入掌握算法特性。同时可扩展至三维空间或多约束条件下的路径优化问题研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值