codeforces 360B Levko and Array (dp神题)

本文详细阐述了如何通过动态规划和二分查找法解决序列优化问题,具体介绍了序列最大差值c的计算方法及可行性判断过程。通过实例分析,展示了算法的应用与实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

给出一个序列定义c=max(a[i+1]-a[i]) 1<=i<n&&n>1  n<=1时 c=0;

题解:

这题要逆向思维,实际上我们并不可能枚举要换掉那些数,因此我们枚举c,然后判断c是否可能从数列变来。显然二分能节省很多时间。判断c是否可行,用dp做,dp[i]表示i不改变的最小改变次数,那么状态方程就是:

dp[i]=min{dp[j]+i-j-1} i-j-1表示i-j的开区间的所有数都进行改变,想想如果要进行改变那么这个区间可能的最小的最大数应该是平分这个区间,即abs(a[i]-a[j])/(i-j)。

注意一点这求出的是不包含,后面还要处理下,得出包含i的。

#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<map>
using namespace std;
typedef long long lld;
const int oo=0x3f3f3f3f;
const lld OO=1LL<<61;
const int Mod=1000000007;
const int maxn=2000+5;
int dp[maxn];
int a[maxn];
int n,k;

bool judge(lld Max)
{
    dp[1]=0;
    for(int i=2;i<=n;i++)
    {
        dp[i]=oo;
        for(int j=i-1;j>=1;j--)
        {
            if(abs(a[i]-a[j])<=Max*(i-j))
                dp[i]=min(dp[i],dp[j]+i-j-1);
        }
        if(i-1<=k) dp[i]=min(dp[i],i-1);
    }
    for(int i=1;i<=n;i++)
        if(dp[i]+n-i<=k)
            return true;
    return false;
}

int main()
{
    lld l,r,mid;
    while(scanf("%d %d",&n,&k)!=EOF)
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        l=0;r=2e9;
        while(l<=r)
        {
            mid=(l+r)>>1;
            if(judge(mid))
                r=mid-1;
            else
                l=mid+1;
        }
        printf("%I64d\n",l);
    }
    return 0;
}
/**
5 2
4 7 4 7 4
3 1
-100 0 100
6 3
1 2 3 7 8 9

*/









评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值