hihoCoder 1076 与链 (数位dp)

该博客介绍了如何利用数位动态规划(DP)解决一道 hihoCoder 1076 题目,该题目要求计算满足特定与运算约束的长度为 k 的整数数组的数量。通过分析约束,博主发现可以按二进制位划分并进行状态转移,优化后的算法将时间复杂度降低,使得问题变得可解。
摘要由CSDN通过智能技术生成

题意:

给定 n 和 k。计算有多少长度为 k 的数组 a1, a2, ..., ak,(0≤ai) 满足:a1 + a2 + ... + ak = n。
对于任意的 i = 0, ..., k - 1 有 ai AND ai + 1 = ai + 1。其中AND是与操作.

题解:

分析ai&ai+1=ai+1这个操作,我们会发现,ai+1必须比ai小或者等于ai才能满足,并且将其化成二进制会发现:

例如 ai+1=10 那么ai可以使:10 110 1110 11110....既然得到这个规律那么我们就可以根据数位dp按照位进行阶段划分,然后求解。dp[i][j]表示到第i为位置,和为j的个数。那么枚举这两状态外,还要枚举下一位1的个数,根据规律发现要满足条件时,某位有1都是往前靠的,比如说现在位i=2 那么这个为的1的排列只能是这样:

1 1 1 1、1 1 1 0、1 1 0 0、1 0 0 0、0 0 0 0.那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值