hihocoder #1076:与链

题目描述: http://hihocoder.com/problemset/problem/1076

看了题没有一点思路,然后就搜到了这篇blog: http://blog.csdn.net/my_acm_dream/article/details/44749819

也是看了好久,好在最后搞明白了

关键的一点就是:假如这k个数的二进制每个数最多有i位,那么如果每个数有i+1位的话,这k个数的第i+1位可以有0,1,2…k个是1,其余是0,并且第1+1位是1的数在前面,然后就可以用数位dp了,dp[i][j]表示k个数每个最多到i位(从0位开始),和为j有多少种情况,由于n<10000,故枚举到dp[13](2^13=8192)就可以了

#include <stdio.h>
#include <string.h>
#define MOD 1000000009
#define MAX_N 10000

long long dp[14][MAX_N+1];

int min(int a, int b){
	return a < b ? a : b;
}

int main(){
	int t, i, j, h, n, k;
	
	scanf("%d", &t);
	while(t--){
		scanf("%d%d", &k, &n);
		memset(dp, 0, sizeof(dp));
		j = n < k ? n :k;
		for(i = 0; i <= j; i++){
			dp[0][i] = 1;
		}
		for(i = 1; i < 14; i++){
			for(j = 0; j <= n; j++){
				for(h = 0; h <= k && j-(h<<i) >= 0; h++){
					dp[i][j] += dp[i-1][j-(h<<i)];
					dp[i][j] %= MOD;
				}
			}
		}
		printf("%lld\n", dp[13][n]); 
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值