如何在Cocos2D游戏中实现A*寻路算法(一)

翻译 2015年11月22日 10:28:44

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处.
如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;)


免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流之用,请勿进行商业用途。同时,转载时不要移除本申明。如产生任何纠纷,均与本博客所有人、发表该翻译稿之人无任何关系。谢谢合作!

该篇博客由iOS课程团队的Johann Fradj发布,他现在是一个全职开发iOS的开发者.他是Hot Apps Factory(其是App Cooker的创造者)的共同创建者.

在本系列课程中,你将学到如何在一个简单的Cocos2D游戏中添加A*寻路算法.

在你学习本课程之前,如果你先阅读过 Introduction to A* Pathfinding (猫猪已经翻译完成,请到http://blog.csdn.net/mydo/article/details/49967597查看翻译后的内容)将会非常有帮助.

它将带你遍历我们将要实现算法的基本概念,并附带有带插图的例子.

这里写图片描述

Add the A* Pathfinding Algorithm to this simple Cocos2D game!

如果你之前有iOS上Cocos2D编程的相关知识,对于学习该系列的课程会很有帮助.如果没有也没关系,你总是可以取得本课程的例子然后用其他语言或其他库来完成.

So先在键盘上找到最短路径,然后让我们开始吧! :]

猫咪迷宫

首先占用点时间,向你介绍一下整个该系列博文中讨论的这个简单游戏是如何工作的.

进入并下载 starter project 项目.编译并运行,你将看到如下画面:

这里写图片描述

在这个游戏中,你扮演一个猫咪大盗,试图从布满危险狗狗的地牢守卫中逃出生天.如果你碰到狗狗,将被咬 — 除非你给它带去一根骨头!

所以该游戏就是关于用正确的顺序取得骨头,以便你可以通过狗狗的把守最终逃出地牢.

注意,猫咪只可以横向或纵向移动(不能对角线移动),并且将移动到另一个瓦块的中心.每一个瓦块都可以被分为可达和不可达.

So尝试一下游戏,看你是否可以过关!我同样推荐你遍历查看一下源代码去熟悉背后的工作原理.这是一个非常简单的瓦片地图游戏,我们将在剩下的课程中对其修改,使其支持A*寻路算法.

相关文章推荐

如何在Cocos2D游戏中实现A*寻路算法(五)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供...
  • mydo
  • mydo
  • 2015-11-22 12:44
  • 1184

如何在Cocos2D游戏中实现A*寻路算法(四)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供...
  • mydo
  • mydo
  • 2015-11-22 12:28
  • 1117

如何在Cocos2D游戏中实现A*寻路算法(六)

大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供...
  • mydo
  • mydo
  • 2015-11-22 14:35
  • 1128

cocos2d a*寻路

菜鸟福利 A星寻路算法 cocos2d-x实现

这篇blog是翻译自iOS Tutorial Team的成员 Johann Fradj发,他目前是一位全职的资深iOS开发工程师。他是HotApps Factory的创始人,该公司开发了AppCook...

如何实现A星寻路算法 Cocos2d-x 3.0 beta2

本文实践自 Johann Fradj 的文章《How To Implement A* Pathfinding with Cocos2D Tutorial》,文中使用Cocos2D,我在这里使用Coco...

如何实现A星寻路算法 Cocos2d-x 3.0 beta2

本文实践自 Johann Fradj 的文章《How To Implement A* Pathfinding with Cocos2D Tutorial》,文中使用Cocos2D,我在这里使用Coco...

cocos2d-x学习日志(14) --A星寻路算法之45度地图

一、A星搜索 他就是一种启发性的算法,根据现在到达这个位置的步数及之后的“估计步数”,即f=g+h,f是整个从起点到终点的代价,g是从起点到我们目前位置的步数,h是从目前位置到终点的估计值,注意这...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)