记录几个开平方算法

原创 2012年03月28日 11:11:04

整数开平方算法:

本算法只采用移位、加减法、判断和循环实现,因为它不需要浮点运算,也不需要乘除运算,因此可以很方便地运用到各种芯片上去。


我们先来看看10进制下是如何手工计算开方的。
先看下面两个算式,
x = 10*p + q  (1)
公式(1)左右平方之后得:
x^2 = 100*p^2 + 20pq + q^2 (2)
现在假设我们知道x^2和p,希望求出q来,求出了q也就求出了x^2的开方x了。
我们把公式(2)改写为如下格式:
q = (x^2 - 100*p^2)/(20*p+q) (3)
这个算式左右都有q,因此无法直接计算出q来,因此手工的开方算法和手工除法算法一样有一步需要猜值。


我们来一个手工计算的例子:计算1234567890的开方


首先我们把这个数两位两位一组分开,计算出最高位为3。也就是(3)中的p,最下面一行的334为余数,也就是公式(3)中的(x^2 - 100*p^2)近似值


       3
    ---------------
    | 12 34 56 78 90
       9
    ---------------
    |  3 34
下面我们要找到一个0-9的数q使它最接近满足公式(3)。我们先把p乘以20写在334左边:


       3  q
    ---------------
    | 12 34 56 78 90
       9
    ---------------
  6q|  3 34
我们看到q为5时(60+q*q)的值最接近334,而且不超过334。于是我们得到:


       3  5
    ---------------
    | 12 34 56 78 90
       9
    ---------------
  65|  3 34
    |  3 25
    ---------------
          9 56
接下来就是重复上面的步骤了,这里就不再啰嗦了。 


这个手工算法其实和10进制关系不大,因此我们可以很容易的把它改为二进制,改为二进制之后,公式(3)就变成了:


q = (x^2 - 4*p^2)/(4*p+q) (4)
我们来看一个例子,计算100(二进制1100100)的开方:


      1  0  1  0
    ---------------
    | 1 10 01 00
      1
    ---------------
 100| 0 10 
    | 0 00 
    ---------------
    |   10 01
1001|   10 01
    ---------------
            0 00
这里每一步不再是把p乘以20了,而是把p乘以4,也就是把p右移两位,而由于q的值只能为0或者1,所以我们只需要判断余数(x^2 - 4*p^2)和(4*p+1)的大小关系,如果余数大于等于(4*p+q)那么该上一个1,否则该上一个0。


下面给出完成的C语言程序,其中root表示p,rem表示每步计算之后的余数,divisor表示(4*p+1),通过a>>30取a的最高2位,通过a<<=2将计算后的最高2位剔除。其中root的两次<<1相当于4*p。程序完全是按照手工计算改写的,应该不难理解。


unsigned short sqrt(unsigned long a){
  unsigned long rem = 0;
  unsigned long root = 0;
  unsigned long divisor = 0;
  for(int i=0; i<16; i++){
    root <<= 1;
    rem = ((rem << 2) + (a >> 30));
    a <<= 2;
    divisor = (root<<1) + 1;
    if(divisor <= rem){
      rem -= divisor;
      root++;
    }
  }
  return (unsigned short)(root);
}


基于二分法的开平方算法

#include <stdio.h>
//求绝对值
#define abs(x) (x)>0?(x):(-(x))
 
int  main(){
    double val;
    double eps;
    //value及精度
    printf("Input $value $eps->");
    scanf("%lf %lf",&val,&eps);
    if(val < 0 )
    {
        val*=-1;
    }
    double low,high;
    if(val  < 1)
    {
        low = val;
        high = 1;
    }
    else
    {
        low= 1;
        high = val;
    }
    while(1)
    {
        double mid =  (high + low)/2;
        double tmp =  mid * mid;
        if((abs(tmp-val))< eps)
        {
            printf("%f\n",mid);
            break;
        }
        if(tmp > val)
        {
            high = mid;
        }
        else
       {
            low = mid;
        }
    }
}


神秘的0x5f3759df之卡马克的开平方算法

float kamake_sqr(float number) {     

    long i;     
    float x, y;     
    const float f = 1.5F;     
    x = number * 0.5F;     
    y = number;     
    i = *(long *) &y;     
    i = 0x5f3759df - (i >> 1);     
    y = *(float *) &i;     
    y = y * (f - (x * y * y));     
    y = y * (f - (x * y * y));     
    return number * y;     
}     
    
main() {     
    printf("sqr(100)=%f", kamake_sqr(100.0));     
    getch();     
}   


输出:sqr(100)=9.999964


算法里面求平方根一般采用的是无限逼近的方法,比如牛顿迭代法,


比如求5的平方根,选一个猜测值比如2,那么我们可以这么算
5/2 = 2.5; 2.5+2/2 = 2.25; 5/2.25 = xxx; 2.25+xxx/2 = xxxx ...


这样反复迭代下去,结果必定收敛于sqrt(5)


卡马克牛就牛在选择了0x5f3759df 这个开始值,使得迭代的时候收敛速度暴涨,对于Quake III所要求的精度10的负三次方,只需要一次迭代就能够得到结果。


附加一个小故事:


普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?


传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。


最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。



〖数学算法〗开平方的七种算法

sqrt()函数,是绝大部分语言支持的常用函数,它实现的是开方运算;开方运算最早是在我国魏晋时数学家刘徽所著的《九章算术》被提及。今天写了几个函数加上国外大神的几个神级程序带大家领略sqrt的神奇之处...
  • nash_
  • nash_
  • 2012年11月23日 21:01
  • 20680

一种快速开平方并取倒数算法

今天在查资料过程中,无意中看到这样一段神奇的代码,决定转载到自己的csdn博客,但是找了半天,愣是没找到csdn转载功能,此前经常看到别人转载文章,然后心里一直在想,是不是转载是一个隐藏功能,或者使用...

快速开平方根算法

人们很早就在Quake3源代码中发现了类似如下的C代码,它可以快速的求1/sqrt(x),在3D图形向量计算方面应用很广 float invSqrt(float x) { float xhalf...
  • xtlisk
  • xtlisk
  • 2016年04月26日 12:02
  • 5723

整数快速开平方算法

//平方根square rootunsigned int __stdcall i32_sqrt(unsigned long x) {   unsigned int r, i;  // 结果、循环计数 ...

计算平方根的算法

申明,本文非笔者原创,原文转载自:http://www.cnblogs.com/xkfz007/archive/2012/05/15/2502348.html...

世界上最快的浮点开方算法

  任何一个3D引擎都是通过其内部的数学模型和实现工具来展现它的力量与速度的,Quake III中使用了一个非常有意思的技巧来计算平方根倒数(inverse square root)  Carmack...

快速浮点开方运算

在之前的博客中我们介绍了数据类型的地址转换,利用它我们可以将一个float型的值直接看成一个int类型。这种地址转换到底有什么意义,或者说有什么用途呢?今天,给大家展示一个实例—快速浮点开方运算,让大...

三角函数快速算法(反正切,正余弦,开平方)

2010-09-08 09:14:27|  分类: 默认分类 |  标签: |字号大中小 订阅 #define REAL   float #define TAN...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:记录几个开平方算法
举报原因:
原因补充:

(最多只允许输入30个字)