关闭

第4章-1 一次模拟多个随机漫步

标签: pythonnumpy数据分析
34人阅读 评论(0) 收藏 举报
分类:
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 03 19:56:20 2017

@author: night
"""

import numpy as np
nwalks = 5000
nsteps = 1000
draws = np.random.randint(0,2,size=(nwalks,nsteps)) #size既为5000行1000列,也就是5000次1000步的随机漫步
print draws     #draws代表了一个5000行的列表,每个列表有1000个元素,这1000个元素是有0和1随机构成
steps = np.where(draws>0,1,-1)      #当元素为1时,step为1,当元素为0时,step为-1
walks = steps.cumsum(1) #所有元素的累积和, 行axis=1,列axis=0
print walks    #walks为5000行的列表,列表中的有1000个元素,每个元素是前面所有元素的累积和
print walks.max()
print walks.min()
hits30 = (np.abs(walks)>=30).any(1) #any(1),对每一行按指定条件进行判断,条件为>=30,当每一行中只要存在1个>=30的数,即返回True,否则当所有值都小于30时,返回False
print hits30    #可以看出是一个布尔型列表
print hits30.sum()  #True相当于1,即对1的数量求和
print walks[hits30]     
print np.abs(walks[hits30])
crossing_times = (np.abs(walks[hits30])>=30).argmax(1)  #hits30列表中True对应在walks中的列表选出来,然后对其中的元素取绝对值。再对前面的语句用argmax(1),即提取每行中首次出现绝对值>=30的元素索引值。
print crossing_times    #返回一个列表,列表中的每一个元素由每行中首次出现绝对值>=30的索引值构成
print crossing_times.mean()


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:293次
    • 积分:61
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档