关闭

TF-IDF算法

566人阅读 评论(0) 收藏 举报
分类:

         阎华讲权限,说到判定两个角色是否相同,权限相似,想到数据挖掘的过程中,经常需要知道个体间差异的大小,评价个体的相似性和类别。如分类和聚类算法,以及广域网爬虫中判定网页相似性等问题。

        为了找出相似的文章,介绍计算相似度算法中最简单的一种,需要用到TF-IDF(term frequency–inverse document frequency)算法(余弦定理)(cosine similiarity)。

下面有两个句子

  句子A:我喜欢看电视,不喜欢看电影,我错了

  句子B:我不喜欢看电视,也不喜欢看电影,我没错

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。

  句子A:我/喜欢/看/电视,不/喜欢/看/电影。

  句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词。

  我,喜欢,看,电视,电影,不,也。

第三步,计算词频。

  句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。

  句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。(一般都有一个去噪的过程,副词,助词等去掉,如了.的,无实际意义)

第四步,写出词频向量。

  句子A:[1, 2, 2, 1, 1, 1, 0]

  句子B:[1, 2, 2, 1, 1, 2, 1]

        我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。其实我理解余弦定理就是投影,这样更好理解。

上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得(不知道怎么求这个夹角的,下来做条辅助线计算,或私聊):

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

余弦值越接近1,两个向量越相似。

所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

由此,我们就得到了"找出相似文章"的一种算法:

  (1)使用TF-IDF算法,找出两篇文章的关键词;

  (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频;

  (3)生成两篇文章各自的词频向量;

  (4)计算两个向量的余弦相似度,值越大就表示越相似。

         做了一个demo,除了文本相似度余弦定理,还有欧式距离,曼哈顿算法等。图像相似Scale Invariant Feature Transform(SIFT)等    加权(权重)。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:9418次
    • 积分:252
    • 等级:
    • 排名:千里之外
    • 原创:17篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    文章分类