自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(106)
  • 资源 (1)
  • 收藏
  • 关注

原创 【RAG】LightRAG:简单且快速的检索增强型生成

摘要:本文提出LightRAG,一种创新的检索增强生成(RAG)系统,通过引入图结构增强文本索引与检索过程,解决现有RAG系统在数据表示扁平化和上下文感知不足等问题。LightRAG采用双层检索框架(低层实体级检索与高层主题级检索),结合图结构与向量表示,显著提升检索精度与效率。实验表明,其性能优于传统方法(如NaiveRAG、GraphRAG),尤其在处理复杂查询和大规模语料库时,同时支持增量数据更新以保持动态适应性。

2025-06-12 14:45:15 1022

原创 【大模型系列篇】RAGFlow文档解析和检索生成指南

在RAGFlow中,嵌入模型发挥着两个关键作用,一是把知识库中的文档数据转换为向量,二是在聊天场景下将用户输入的自然语言转换为向量。这些向量能够在向量空间中体现文本的语义特征,为后续的相似度对比提供依据。当用户进行提问时,RAGFlow会基于混合相似度计算来判断二者的相关性。筛选出与问题相似度高的内容后,RAGFlow会根据这些文档的内容,结合自身的语言生成能力,生成合适的回答输出给用户。如果知识库是基于中文的,可以选择:BAAI/bge-large-zh-v1.5。多语言的可以视情况而定。

2025-06-12 07:00:00 1417

原创 【大模型系列篇】RAGFlow文档解析利器:DeepDoc

RAGFlow 的文档解析核心组件被称为 DeepDoc,是一个利用视觉信息和解析技术对文档进行深度理解的系统,其功能模块化地包含了多个部分,主要是两个组成部分:视觉处理和解析器。框架中提出的一个支持多种文本切片的解析模版,包括:Q&A、ReSume、Paper、Manual、Table、Book、Law等等。以更好地结合业务场景,确保结果的可控性和可解释性。MinerU 是由上海人工智能实验室的大模型数据基础团队开发的开源数据提取工具,专注于复杂 PDF 文档的高效解析与多模态内容提取。

2025-06-10 18:51:54 1728

原创 【大模型系列篇】RAGFlow递归抽象处理树组织检索:Raptor

本文介绍了RAPTOR(递归摘要处理树结构检索)模型,这是一种创新的检索增强型语言模型方法。针对传统检索方法仅获取短文本片段、难以理解整体文档上下文的问题,RAPTOR通过递归地对文本块进行嵌入、聚类和摘要,构建多层次摘要树结构。在推理时,模型可从不同抽象级别检索信息,显著提升复杂问答任务的性能。研究对比了树遍历和折叠树两种检索方式,发现后者实现更简单且效果更优。论文还讨论了实现成本、适用场景等问题,指出该方法特别适合处理长文本,为信息检索领域提供了新的解决方案。

2025-06-10 14:36:28 1149

原创 大模型从零开始——什么是RAG三元组,如何评估RAG系统效果?

RAG三元组指标是评估检索增强生成系统的核心框架,包含三个关键指标:1)答案相关性(评估回答与查询的匹配度);2)上下文相关性(衡量检索内容对查询的支持度);3)忠实度(检验回答是否基于检索上下文)。三者相互制约,共同反映RAG系统的性能。该框架无需人工标注,可通过工具自动实现评估,指导优化检索策略、提示工程和模型选择。开发者可利用RAGAs等工具进行三元组评估,系统性提升问答系统的准确性和可靠性。

2025-06-05 14:43:24 511

原创 VRAG-RL:通过基于强化学习的迭代推理来增强视觉感知RAG,以实现视觉丰富信息的理解

在数字化时代,视觉信息在知识传递和决策支持中的重要性日益凸显。然而,传统的检索增强型生成(RAG)方法在处理视觉丰富信息时面临着诸多挑战。一方面,传统的基于文本的方法无法处理视觉相关数据;另一方面,现有的视觉 RAG 方法受限于定义的固定流程,难以有效激活模型的推理能力。VRAG-RL:将强化学习算法引入多模态智能体训练,借助迭代推理和视觉感知空间,全方位提升视觉语言模型(VLMs)在检索、推理和理解视觉信息方面的能力,为纯视觉检索增强生成任务提供有效解决方案,代码、模型全面开源!

2025-06-05 11:00:56 642

原创 【TTS】基于GRPO的流匹配文本到语音改进:F5R-TTS

本文提出了一种新型文本到语音系统F5R-TTS,通过将群体相对策略优化融入流匹配架构,实现了语义准确性和说话人相似度的显著提升。该系统采用两阶段训练:首先将流匹配模型的确定性输出重构为概率高斯分布进行预训练;随后引入GRPO强化学习阶段,利用自动语音识别(WER)和说话人相似度(SIM)作为双重奖励指标。实验结果表明,在零样本语音克隆任务中,F5R-TTS相比传统流匹配模型,WER相对降低29.5%,SIM得分提升4.6%,尤其在噪声条件下表现出更强的鲁棒性。

2025-05-30 17:00:26 1392

原创 【大模型系列篇】ZeroSearch: 无需搜索即可激发LLM的搜索能力

本文提出ZeroSearch框架,通过强化学习增强大语言模型(LLM)的搜索能力,无需依赖真实搜索引擎。该方法首先利用监督微调将LLM转换为检索模块,可控制生成相关/噪声文档;继而设计课程学习机制,逐步增加噪声文档比例以提升模型鲁棒性。实验表明,3B参数的LLM即可有效训练搜索策略,7B模型性能媲美谷歌搜索,14B模型甚至更优。该框架兼容不同参数规模的基座模型和指令微调模型,支持PPO、GRPO等多种强化学习算法,显著降低了传统方法的高API成本问题,为检索增强生成提供了高效可扩展的解决方案。

2025-05-29 17:33:17 1032

原创 【大模型系列篇】安全Transformer推理协议:STIP

本文提出了一种高效安全的三方Transformer推理协议STIP,解决了现有两方安全协议在计算和通信上的高开销问题。通过将模型所有者分解为模型开发者和模型服务器两个实体,STIP采用特征空间随机置换实现数据和参数的隐私保护,同时保持推理精度无损。实验表明,STIP比现有安全协议效率提升数百万倍,在700亿参数模型上仍保持实用性能。该协议支持多种Transformer变体,为隐私敏感的AI服务提供了可行的安全解决方案。

2025-05-29 07:00:00 1753

原创 【RAG】一种使用知识图谱增强检索增强生成技术的特定领域问答框架:DO-RAG

特定领域的问答系统不仅需要生成流畅性,还需要基于结构化专家知识的高度事实准确性。 虽然最近的检索增强生成 (RAG) 框架提高了上下文召回率,但它们在集成异构数据和保持推理一致性方面仍然存在困难。 为了解决这些挑战,我们提出了DO-RAG,这是一个可扩展且可定制的混合问答框架,它将多级知识图谱构建与语义向量检索相结合。 我们的系统采用了一种新颖的主动思维链架构,从非结构化、多模态文档中提取结构化关系,构建动态知识图谱以提高检索精度。

2025-05-28 14:53:04 840

原创 【ASR】基础端到端语音识别工具包:FunASR

FunASR是一款开源的语音识别工具包,旨在连接学术研究与工业应用。核心模型Paraformer是一种高效的非自回归端到端语音识别模型,基于6万小时标注普通话数据训练,性能优于传统模型,推理速度提升12倍。FunASR还集成了语音活动检测(FSMN-VAD)和标点预测(CT-Transformer)模块,支持时间戳预测和热词定制功能。实验显示该工具包在多个数据集上达到SOTA性能,并支持CPU/GPU部署和量化加速。通过提供预训练模型和微调接口,FunASR降低了语音识别系统的开发门槛,促进了技术落地应用。

2025-05-28 07:00:00 1046

原创 【ASR】基于分块非自回归模型的流式端到端语音识别

本文提出了一种新颖的端到端流式非自回归(NAR)语音识别系统,结合分块注意力和Mask-CTC模型。该系统将输入音频分割成小块进行流式处理,采用动态重叠解码策略解决边界错误问题。实验表明,与传统的Mask-CTC相比,该方法在TEDLIUM2和AISHELL1数据集上实现了更低的在线识别错误率和更快的推理速度(比自回归模型快10倍),同时保持了较低的实时因子(RTF)。这是首个将NAR机制成功应用于流式语音识别的研究,为低延迟场景下的语音识别提供了有效解决方案。

2025-05-27 10:43:15 1463

原创 【大模型系列篇】对话式人工智能的延迟怎么算,如何优化?

对话式AI的延迟优化是实现自然交互的关键。摘要指出,对话式AI涉及ASR语音转文本、话轮转换、LLM文本处理和TTS文本转语音四个核心环节,每个环节的延迟叠加会影响整体体验。当前优化策略包括:选择高效模型(如Gemini Flash)、减少网络调用、异步处理函数调用等,目标是将延迟控制在亚秒级。未来趋势是开发语音到语音的端到端模型,但需权衡训练成本。值得注意的是,ASR和TTS模块在其他领域(如无障碍交互)也具有独立应用价值。通过系统级优化,可实现接近人类对话的流畅体验。

2025-05-27 07:00:00 1041

原创 【大模型系列篇】大模型深度思考新范式:交替「推理-擦除」

近期大型语言模型通过允许模型在测试时进行更深入、更长时间的思考,显著提升了推理能力。这种深度思维能力的核心方法是思维链(CoT),即模型迭代生成中间推理步骤直至得出最终答案。然而,随着任务复杂度的增加,CoT面临上下文窗口限制、信息检索困难和自注意力机制成本高等问题。论文提出了一种新的推理范式PENCIL,它通过递归生成和删除想法,只保留对后续推理有用的部分,从而在更短的工作记忆中实现更深入的思考。

2025-05-20 07:00:00 889

原创 【大模型系列篇】驱动编码助手Cursor与Windsurf工作的隐藏算法解读

氛围编程是由AI辅助的编程方式,开发者只需提出需求,AI生成代码后直接应用,遇到问题再要求AI修改。该方式降低了编程门槛,提升了效率。Cursor和Windsurf是两种流行的AI编程助手,通过复杂的算法和系统理解代码库,提供智能建议和修改。Cursor使用两阶段检索流程和向量存储来索引代码,而Windsurf则构建代码图谱并采用LLM搜索工具。两者都通过ReAct模式将语言模型转化为多步骤编码代理,实现高效的代码编辑和问题解决。这些AI助手的核心在于能够实时理解代码库,并根据开发者的需求提供精准编程支持。

2025-05-16 13:19:18 1234

原创 【RAG】检索增强生成的最佳实践

典型的RAG工作流程通常包含多个中间处理步骤:查询分类(确定对于给定的输入查询是否需要进行检索)、检索(高效地获取与查询相关的文档)、重新排序(根据文档与查询的相关性对检索到的文档进行排序)、重新打包(将检索到的文档组织成结构化的形式以更好地生成)、摘要(从重新打包的文档中提取关键信息用于生成响应并消除冗余)模块。常见的重新排名方法采用深度语言模型,例如 BERT [25]、T5 [26] 或 LLaMA [27],这需要较慢的速度重新排序期间的推理步骤,但可以获得更好的性能。为了解决这些问题,我们使用。

2025-05-16 07:00:00 1119

原创 【SpeechLLMs】语音大型语言模型综述《A Survey on Speech Large Language Models》

本文全面探讨了语音大型语言模型的发展、架构及其在口语理解(SLU)领域的应用。传统方法通过级联自动语音识别(ASR)生成的文本进行处理,而新方法则围绕音频特征提取、多模态信息融合和LLM推理设计架构,实现了更丰富的音频特征提取和端到端的多模态融合。文章详细分析了语音LLM的架构演变、多模态信息融合方法(如音频到文本模态转换和结合音频与文本特征空间)以及训练策略(如预训练、监督微调和强化学习)。尽管语音LLM在富音频转录和跨任务集成方面取得了显著进展,但仍面临LLM休眠、高成本等挑战。

2025-05-15 06:00:00 917

原创 【RAG】RAG-MCP:基于检索增强生成来缓解大语言模型工具选择中的提示膨胀问题

本文介绍了RAG-MCP,一个检索增强生成框架,旨在解决大型语言模型(LLM)在利用外部工具时面临的提示膨胀和选择复杂性问题。RAG-MCP通过语义检索从外部索引中识别与查询最相关的模型上下文协议(MCP),仅将选定的工具描述传递给LLM,从而减少提示大小并简化决策过程。实验表明,RAG-MCP显著减少了提示词token,并在基准任务上的工具选择准确率提高了三倍多。RAG-MCP使得LLM能够进行可扩展且准确的工具集成,为下一代使用广泛工具包运行的人工智能代理提供了一个切实可行的解决方案。

2025-05-15 06:00:00 1420

原创 【大模型系列篇】从初代到前沿:一文回顾Qwen进化史

一文回顾Qwen模型系列:Qwen3、Qwen2.5-Omni、Qwen2.5-VL、Qwen2.5-1M、QVQ、QwQ、Qwen2.5-Coder、Qwen2.5、Qwen2.5-Math、Qwen2-Math、Qwen2-Audio、Qwen2-VL、Qwen2、Qwen1.5、Qwen。

2025-05-14 07:18:11 1823

原创 【大模型系列篇】Qwen3思考预算及思考模式切换实现原理探索

我们之前一期有介绍过阿里发布并开源的Qwen3大语言模型,无缝集成思考模式、多语言和MCP智能体。而在本次开源的 Qwen3 的更新中,核心亮点之一是支持思考模式的切换。Qwen3 既可以在思考模式下深思熟虑,也可以在非思考模式中提供快速的响应。更重要的是,这两种模式的结合增强了 Qwen3 实现稳定且高效的“思考预算”控制能力。如下图所示,随着思考预算分配的提升,模型在评测集上的得分也逐渐提升。

2025-05-07 09:00:00 2689

原创 【容器化】Docker容器技术入门基础教程

Docker 基于 Linux 容器(LXC) 技术,利用内核的 Cgroup(资源隔离) 和 命名空间(进程隔离) 实现应用的独立运行环境。的意思是直接使用宿主机网络,相当于去掉了容器的网络隔离(其他隔离依然保留),所有的容器会共享宿主机的IP地址和网卡。,也就是桥接模式,它有点类似现实世界里的交换机、路由器,只不过是由软件虚拟出来的,容器和宿主机再通过虚拟网卡接入这个网桥(图中的docker0。容器(Container)是镜像的运行实例,是动态的、隔离的轻量级环境。容器可启动、停止、删除,且相互隔离。

2025-05-06 14:26:52 1115

原创 【大模型系列篇】开启AI自主科研新时代:WebThinker开源深度研究框架

WebThinker 是一个开源的深度研究框架,由中国人民大学自然语言处理实验室(RUC-NLPIR)推出。WebThinker 使大型推理模型(LRM) 能够在他们的思考过程中自主搜索 、 深入探索网页和起草研究报告。与通常使用具有预定义工作流的检索增强生成 (RAG) 的现有开源深度搜索代理不同,它一个面向复杂问题解决与科研写作的推理智能体,赋予了大型推理模型自主执行网络搜索、深度网页探索、内容整合与科研报告撰写的端到端能力,旨在解决传统模型依赖静态知识库、难以处理复杂知识密集型任务的局限性。

2025-05-06 13:00:35 1189

原创 【容器化】Linux环境Docker在线与离线安装手册

Docker是一组平台即服务(PaaS)的产品。它基于操作系统层级的虚拟化技术,将软件与其依赖项打包为容器。托管容器的软件称为Docker引擎。Docker能够帮助开发者在轻量级容器中自动部署应用程序,并使得不同容器中的应用程序彼此隔离,高效工作。该服务有免费和高级版本。它于2013年首次发布,由Docker, Inc.开发。安装要求Linux内核版本≥3.10。

2025-04-30 17:44:40 740

原创 【大模型系列篇】Qwen3开源全新一代大语言模型来了,深入思考,更快行动

Qwen3 采用混合专家(MoE)架构,总参数量 235B,激活仅需 22B。Qwen3 预训练数据量达 36T,并在后训练阶段多轮强化学习,将非思考模式无缝整合到思考模型中。Qwen3 在推理、指令遵循、工具调用、多语言能力等方面均大幅增强。

2025-04-30 14:02:28 1539

原创 【大模型系列篇】从RAG到Agent:Dify×RAGFlow 如何实现企业级知识库的「认知跃迁」?

很早之前我们有使用过Dify来加速AI应用开发和构建企业级智能问答系统,今天我们再来认识下RAGFlow,以及Dify如何外接RAGFlow知识库大脑,提升精准检索能力,告别大模型幻觉问题,完成企业级知识库的认知跃迁。破局大模型知识瓶颈:Dify+RAGFlow的混合检索。

2025-04-24 16:35:57 1173

原创 【大模型系列篇】智能体协作革命:ANP/A2A/MCP协议矩阵与智能体生态蓝图

今天我们来聊聊ANP/A2A/MCP三种协议框架及其智能体生态蓝图,Google-A2A协议(Agent-to-Agent协议)、Anthropic-MCP协议(模型上下文协议) 、比特智元科技-ANP协议(Agent网络协议)。AI联邦时代将通过分层整合ANP、MCP与A2A,可构建兼具灵活性、安全性与效率的智能体生态系统,推动AI从单点工具向群体协作进化。

2025-04-23 11:08:16 995

原创 【Python编程】Python高性能异步Web框架Sanic

Sanic一款高性能的异步Web框架,它基于异步编程模型(ASGI),使用uvloop事件循环优化 I/O 性能,单节点可处理 10k+ 并发连接,甚至在高并发场景下延迟低于 FastAPI。那么 Sanic 为什么这么快呢?首先它是一个异步框架,使用了 Python 中的协程。而提到协程必然少不了事件循环,而事件循环的构建依赖第三方库 uvloop。uvloop 使用 Cython 编写,基于 libuv,它可以让 asyncio 变得更快。

2025-04-17 17:54:10 1232

原创 【大模型系列篇】使用LangGraph-Studio搭建本地深度研究工具:ollama-deep-researcher

Local Deep Researcher 是一款完全本地的网络研究助手,它可以使用由 Ollama 或 LMStudio 托管的任何大型语言模型 (LLM)。用户只需提供一个主题,它将生成一个网络搜索查询,收集相关的网页搜索结果(默认情况下通过),总结搜索结果,并反思总结以检查知识差距,发掘知识空白。接着,生成新的搜索查询,并重复用户定义的循环次数,继续深入研究以解决差距改进总结。最终它将为用户提供一个markdown 格式总结,其中包含用于生成总结的所有资源。

2025-04-17 10:49:35 1485

原创 【大模型系列篇】深度研究智能体技术演进:从DeepResearch到DeepResearcher,如何重构AI研究范式

DeepResearcher 创新性地提出了在真实世界网络环境中进行端到端强化学习训练深度研究智能体的框架,有效解决了传统方法在开放域任务中的局限性,通过多智能体架构和技术创新,显著提升了智能体的研究能力和泛化性,并揭示了涌现的规划、交叉验证、反思和诚实等认知行为,强调了真实世界环境对于训练鲁棒智能体的根本重要性。

2025-04-15 14:43:29 1907

原创 【大模型系列篇】基于Ollama和GraphRAG v2.0.0快速构建知识图谱

GraphRAG是一种结合了知识图谱和大型语言模型的检索增强生成(RAG)技术。它通过引入图结构化的知识表示和处理方法,显著提升了传统RAG系统的能力,为处理复杂和多样化数据提供了强有力的支持。更多介绍可以跳转《最强检索增强技术GraphRAG基本原理详解》阅读。本期我们将基于GraphRAG v2.0.0版本结合Ollama本地部署的大模型来快速构建知识图谱。

2025-04-11 15:53:49 1728 1

原创 【大模型系列篇】最强检索增强技术GraphRAG基本原理详解

GraphRAG技术的核心原理在于将知识图谱与图机器学习相结合,通过结构化的知识表示和高效的图算法,提升大型语言模型在处理复杂数据时的理解和推理能力。具体来说,GraphRAG首先将非结构化的文本数据转换为结构化的图谱形式,其中文本中的实体和概念被视为图中的节点,而它们之间的关系则构成节点之间的边。最后,由于GraphRAG需要处理大量外部数据,包括敏感的个人信息或商业机密,如何在确保模型性能的同时保护隐私和遵循道德规范,是其未来发展需要考虑的重要问题。

2025-04-11 10:45:08 1291

原创 【大模型系列篇】大模型基建工程:基于 FastAPI 自动构建 SSE MCP 服务器 —— 进阶篇

🔥FastAPI 基于 Starlette 和 Uvicorn,采用异步编程模型,可轻松处理高并发请求,尤其适合 MCP 场景下大模型与外部系统的实时交互需求,其性能接近 Node.js 和 Go,在数据库查询、文件操作等 I/O 密集型任务中表现卓越。这种架构既保留了 FastAPI 的高效开发体验,又通过 MCP 协议实现了与前沿 AI 技术的无缝对接,同时结合 Docker 和 Kubernetes 实现弹性伸缩部署,可以快速应对大模型调用量的突发增长,是构建下一代智能系统的理想选择。

2025-04-03 22:03:15 735

原创 【大模型系列篇】大模型基建工程:基于 FastAPI 自动构建 SSE MCP 服务器

🔥FastAPI 基于 Starlette 和 Uvicorn,采用异步编程模型,可轻松处理高并发请求,尤其适合 MCP 场景下大模型与外部系统的实时交互需求,其性能接近 Node.js 和 Go,在数据库查询、文件操作等 I/O 密集型任务中表现卓越。这种架构既保留了 FastAPI 的高效开发体验,又通过 MCP 协议实现了与前沿 AI 技术的无缝对接,同时结合 Docker 和 Kubernetes 实现弹性伸缩部署,可以快速应对大模型调用量的突发增长,是构建下一代智能系统的理想选择。

2025-04-02 14:18:32 2603 2

原创 【大模型系列篇】构建智能体MCP客户端:完成大模型与MCP服务端能力集成与最小闭环验证

上期我们通过fastmcp开发了Python版本的天气预报MCP Server,同时使用了MCP Inspector工具调试了天气预报接口,详见《使用Python开发MCP Server及Inspector工具调试》,本期我们构建MPC客户端来调用上期部署的天气预报MCP服务端,同时接入大模型对话功能。

2025-03-27 16:21:09 1431

原创 【大模型系列篇】使用Python开发MCP Server及Inspector工具调试

基于fastmcp开发python版本weather mcp server, 并通过MCP Inspector连接进行调试。MCP Inspector 是专为 Model Context Protocol(MCP)服务器设计的交互式调试工具,支持开发者通过多种方式快速测试与优化服务端功能

2025-03-26 18:15:12 4447

原创 【大模型系列篇】深剖AutoGen多智能体协作框架发展脉络,快速入门简单示例

AutoGen 起初由微软研究院团队开发,最初定位为多智能体协作框架 ,通过多个 AI 智能体(Agent)的对话协作解决复杂任务。提供底层工具链,支持自定义智能体、任务分解、对话编排等,开发者可通过少量代码实现复杂流程。2024年9月,AutoGen 核心团队与微软分道扬镳,创建了原项目的GH分支。最终,在11月,他们成立了新的 AG2 GitHub 组织和新的仓库,同时接管了 PiPy 的autogen和pyautogen包。

2025-03-26 11:16:25 1544

原创 【Python编程】使用python-dotenv进行高效的环境变量管理

python-dotenv 是一个 Python 库,用于从 .env 文件中加载环境变量到你的应用程序中。这是管理敏感信息(如数据库凭证、API 密钥和配置参数)的一种安全而灵活的方式,而无需将这些信息硬编码到代码中。

2025-03-25 17:18:41 420

原创 【大模型系列篇】深度解锁MCP模型上下文协议,赋能大模型玩转智能体

MCP(Model Context Protocol)是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USB-C 接口。就像 USB-C 为设备连接各种外设和配件提供了标准化方式一样,MCP 为 AI 模型连接不同的数据源和工具提供了标准化方式。该协议用于将AI助手连接到数据所在系统,包括内容库、业务工具和开发环境。其目的是帮助前沿模型生成更好、更相关的响应。

2025-03-20 17:44:42 1722

原创 【大模型系列篇】Claude (Anthropic) 高效智能体构建指南

智能体(Agent)可以从多个角度进行定义。一些客户将智能体定义为完全自主的系统,这些系统能够在较长时间内独立运行,并使用各种工具来完成复杂任务。另一些客户则用这一术语来描述遵循预定义工作流程的规范性实现。在大语言模型(LLMs)领域取得成功,并不是要构建最复杂的系统,而是要构建适合需求的系统。从简单的提示开始,通过全面评估进行优化,只有在简单解决方案不足时,才考虑添加多步骤的智能体系统。

2025-03-12 17:23:15 1505

原创 【大模型系列篇】解锁谷歌AI Agent智能体技术白皮书,跨入智能体时代

智能体是一种应用程序,它能通过观察周围世界,并利用其可支配的工具来实现特定目标。智能体具备自主性,能够在没有人类干预的情况下独立行动,甚至在没有明确的人类指令集时,也能主动推理下一步如何实现最终目标。智能体是有自主能力的,只要提供了合适的目标,它们就能独立行动,无需人类干预;即使是模糊的人类指令,智能体 也可以推理出它接下来应该做什么,并采取行动,最终实现其目标。

2025-03-12 13:57:20 1007

阿里巴巴Java开发手册(终极版)

阿里巴巴Java开发手册(终极版)

2017-06-05

大语言模型安全与隐私风险综述

大语言模型安全与隐私风险综述

2025-05-27

CKKS全同态加密技术《Introduction to CKKS》

内容概要:本文介绍了CKKS(Cheon-Kim-Kim-Song)同态加密技术的基本概念、关键算法和具体实现。 CKKS支持浮点数和近似计算,适用于多种安全计算场景。 文中详细解释了编码与解码过程、密文操作(如加法、乘法)、重线性化、重新缩放以及旋转等技术细节。 同时,讨论了实际应用中的参数设置和技术挑战,例如模数切换和引导机制。 适合人群:密码学研究者、信息安全专业人士、高级软件开发者、对同态加密感兴趣的技术人员。 使用场景及目标:本文适用于需要进行安全数据计算的应用场景,特别是涉及隐私保护的数据分析和机器学习任务。 通过对CKKS的理解和掌握,可以提升系统的安全性并减少敏感数据泄露的风险。 其他说明:本文不仅提供理论基础,还给出了具体的实现案例,如使用SEAL库中的示例代码。 建议读者在学习过程中结合代码进行实践,以更好地理解和应用CKKS技术。

2024-10-24

Java(JDK17)通过JNI实现调用C++动态链接库

Java(JDK17)通过JNI实现调用C++动态链接库- CMake模块化项目管理

2024-08-20

大语言模型综述中文版《A Survey of Large Language Models》

该综述文章系统性地梳理了大语言模型的研究进展与核心技术,讨论了大量的相关工作。 本篇综述中,通过介绍大语言模型的背景、主要发现和主流技术来回顾近年来的进展。特别关注大语言模型的四个主要方面,即预训练、适配微调、应用和能力评估。此外,还总结了开发大语言模型的可用资源,并讨论了未来可行的发展方向。本文提供了关于大语言模型的最新文献综述,期望能为研究人员和工程师提供帮助。

2024-08-12

不经意传输协议研究综述-软件学报2023

不经意传输协议研究综述-高莹,李寒雨,王玮, 刘翔, 陈洁 不经意传输协议, 也叫茫然传输协议, 是一种保护隐私的两方通信协议, 消息发送者持有两条待发送的消息, 接收者选择一条进行接收, 事后发送者对接收者获取哪一条消息毫不知情, 接收者对于未选择的消息也无法获取任何信息. 不经意传输协议是安全多方计算技术的关键模块之一, 其效率优化可有效推动安全多方计算技术的应用落地, 对于特殊的两方安全计算协议如隐私集合交集计算尤为重要. 总结了不经意传输协议的分类及几种常见的变体, 分别阐述了基于公钥密码的不经意传输协议的构造和研究进展, 以及不经意传输扩展协议的构造和研究进展, 由此引出不经意传输扩展协议的效率优化研究的重要性. 同时, 在半诚实敌手和恶意敌手这两种敌手模型下, 分别对不经意传输协议和不经意传输扩展协议的效率优化研究进展进行了全面梳理. 另一方面, 从应用角度对不经意传输协议和不经意传输扩展协议在工程实现中常用的优化技术进行了系统化分析. 最后, 总结了不经意传输协议和不经意传输扩展协议研究目前所面临的主要问题及未来发展趋势。

2024-07-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除