牛顿下降法和梯度下降法(最速下降法)的速度的比较

本文探讨牛顿下降法和梯度下降法在寻找极值点时的收敛速度。牛顿法利用二次曲面拟合,通常比梯度下降法(平面拟合)更快。尽管梯度下降的步长选择对其性能关键,但牛顿法因利用更多函数信息而通常具有更快的收敛速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“牛顿下降法和梯度下降法在机器学习和自适应滤波中的都很重要,本质上是为了寻找极值点的位置。但是收敛的速度不同。 本文中就两种方法来探究一下,哪种收敛方法速度快“


牛顿下降法的递推公式:

xn+1=xnf(xn)/f(xn)

梯度下降算法的递推公式:

xn+1=xnμf(xn)

<script type="math/tex; mode=display" id="MathJax-Element-3"></script>

解释一

下图是两种方法的图示表示,红色为牛顿下降法,绿色为梯度下降法,从图中直观的感觉是,红色线短,下降速度快。因为牛顿下降法是用二次曲面去拟合当前的局部曲面,而梯度下降法是用平面去拟合当前的局部曲面,一般用二次曲面拟合的更好,所以一般牛顿算法收敛快。

红颜色的

关于以上的说法中,梯度下降法是用平面去拟合当前的局部曲面。梯度 f’(x)的方向是函数变大的方向。这里需要解释一下,对于一维情况而言,梯度方向只有正方向和负方向。至于为什么梯度下降算法就是用平面去拟合了,大多数情况下,没有讲的详细。接下来就聊一下为什么。

首先考虑一下这个公式,这是一阶泰勒展式,其实就是用平面去拟合函数的局部曲面。

f(x+
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值