(一)Trie的简介
Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树。他的核心思想是空间换时间,空间消耗大但是插入和查询有着很优秀的时间复杂度。
(二)Trie的定义
和插入操作相仿,若查询途中某一个结点并不存在,则直接就return返回。否则继续下去,当字符串结束时,trie树上也有结束标志,那么证明此字符串存在,return true;
Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树。他的核心思想是空间换时间,空间消耗大但是插入和查询有着很优秀的时间复杂度。
(二)Trie的定义
Trie树的键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的所有子孙都有相同的前缀(prefix),从根节点到当前结点的路径上的所有字母组成当前位置的字符串,结点可以保存当前字符串、出现次数、指针数组(指向子树)以及是否是结尾标志等等。
typedef struct Trie_Node
{
char count[15]; //单词前缀出现的次数
struct Trie_Node* next[MAXN]; //指向各个子树的指针
bool exist; //标记结点处是否构成单词
}Trie;
Trie树可以利用字符串的公共前缀来节约存储空间,如下图所示:
它有3个基本性质:
(1) 根节点不包含字符,除根节点外每一个节点都只包含一个字符。
(2) 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串。
(3) 每个节点的所有子节点包含的字符都不相同。
(三)Trie树的基本操作
(1)插入操作
按下标索引逐个插入字母,若当前字母存在则继续下一个,否则new出当前字母的结点,所以插入的时间复杂度只和字符串的长度n有关,为O(n)。
void Insert(Trie *root, char* s,char *add)
{
Trie *p=root;
while(*s!='\0')
{
if(p->next[*s-'a']==NULL)
{
p->next[*s-'a']=createNode();
}
p=p->next[*s-'a'];
// p->count=add;
++s;
}
p->exist=true;
strcpy(p->count,add);
}
(2)查询操作
和插入操作相仿,若查询途中某一个结点并不存在,则直接就return返回。否则继续下去,当字符串结束时,trie树上也有结束标志,那么证明此字符串存在,return true;
int Search(Trie* root,const char* s)
{
Trie *p=root;
while(*s!='\0')
{
p=p->next[*s-'a'];
if(p==NULL)
return 0;
++s;
}
return p->count;
}
(3)删除操作
一般来说,对Trie单个结点的删除操作不