参考:http://www.cs.ucf.edu/courses/cap5937/fall2004/Longest%20common%20subsequence.pdf
最长公共子序列 的 nlogn 的算法本质是 将该问题转化成 最长增序列(LIS),因为 LIS 可以用nlogn实现,所以求LCS的时间复杂度降低为 nlogn。
1. 转化:将LCS问题转化成LIS问题。
假设有两个序列 s1[ 1~6 ] = { a, b, c , a, d, c }, s2[ 1~7 ] = { c, a, b, e, d, a, b }。
记录s1中每个元素在s2中出现的位置, 再将位置按降序排列, 则上面的例子可表示为:
loc( a)= { 6, 2 }, loc( b ) = { 7, 3 }, loc( c ) = { 1 }, loc( d ) = { 5 }。
将s1中每个元素的位置按s1中元素的顺序排列成一个序列s3 = { 6, 2, 7, 3, 1, 6, 2,

本文介绍了如何将最长公共子序列(LCS)问题转化为最长递增子序列(LIS),利用nLogn算法解决LCS。通过转化序列并构建新的序列s3,然后对s3求LIS来找到LCS答案。同时,文章讨论了序列的最小覆盖定理,并解释了如何用nLogn算法求解最小覆盖,以达到求解LCS的目的。最后,提供了一道相关题目及代码示例。
最低0.47元/天 解锁文章
648

被折叠的 条评论
为什么被折叠?



