再谈八皇后问题

原创 2004年07月24日 00:16:00

题目:

十九世纪著名的数学家高斯提出:在8×8格的国际象棋棋盘上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。


分析:

其实问题可以转化为12345678的满足某种条件(行已不等,列亦不等,只需设定其不在同一斜线上,即斜率不为 1 或-1 )的排列.

通过前两天用非递归方式解决序列的全排列问题(.http://blog.csdn.net/northwolves/archive/2004/07/21/47601.aspx),在较短的时间内写出如下代码,经测试速度还可以:

代码:

'add a textbox (with multiline=true and scrollbars=2 vertical),and a commandbutton


Private Sub queens8(ByRef result() As String) '计算八皇后问题的过程
Dim i As Long, J As Integer, k As Integer '循环变量
Dim FIT As Boolean '判定是否符合条件
Dim ALL(1 To 8), out(1 To 8) As String '用于输出的数组
Dim TEMP1 As Long, TEMP2 As Integer '进制转换中间变量
For i = 1 To 40320 ' 穷举8!种排列
ALL(1) = 1
TEMP1 = i
For J = 2 To 8
TEMP2 = TEMP1 Mod J '混合进制
TEMP1 = TEMP1 / J
If TEMP2 = 0 Then
ALL(J) = J 'temp2为 0则放在最后
Else
For k = J To TEMP2 + 1 Step -1
ALL(k) = ALL(k - 1) ' temp2之后的元素后移一位
Next
ALL(TEMP2) = J 'temp2不为 0 则置于第temp2个元素前
End If
Next '至此得到12345678的一个排列

FIT = True '初始化变量

'循环判断有否两个皇后存在互吃
For J = 1 To 8
For k = 8 To 1 Step -1
If Not k = J Then
If Abs((ALL(k) - ALL(J))) = Abs(J - k) Then
FIT = False
GoTo pass '跳出循环
End If
End If
Next
Next

If FIT Then '满足条件时
Num = Num + 1 '输出编号
ReDim Preserve result(1 To Num)
For J = 1 To 8
out(J) = String(8, StrConv("□", vbWide))
Mid(out(J), ALL(J), 1) = StrConv("Q", vbWide)
Next
result(Num) = "第" & Num & "种方法:" & vbCrLf & Join(out, vbCrLf) '输出第 num 种 8个皇后摆放状态
End If
pass:
Next
End Sub

Private Sub Command1_Click()
Dim result() As String
Text1.Text = ""
queens8 result
Text1.Text = Join(result, vbCrLf & vbCrLf)
End Sub

输出:

第1种方法:
□□□□Q□□□
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□
□□Q□□□□□
Q□□□□□□□
□□□Q□□□□
□□□□□□□Q

第2种方法:
□□□Q□□□□
□□□□□□Q□
□□□□Q□□□
□Q□□□□□□
□□□□□Q□□
Q□□□□□□□
□□Q□□□□□
□□□□□□□Q

第3种方法:
□□□□□Q□□
□□□Q□□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□Q□□□
□Q□□□□□□
□□□□□□□Q

第4种方法:
□□□□□Q□□
□□Q□□□□□
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q

第5种方法:
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□
□□Q□□□□□
□□□□□Q□□

第6种方法:
□□□□□□□Q
□Q□□□□□□
□□□□Q□□□
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□□□Q□□□□
□□□□□Q□□

第7种方法:
□□□□□□□Q
□□Q□□□□□
Q□□□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□Q□□□
□□□□□□Q□
□□□Q□□□□

第8种方法:
□□□□□□□Q
□□□Q□□□□
Q□□□□□□□
□□Q□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□
□□□□Q□□□

第9种方法:
□□□□Q□□□
□□□□□□□Q
□□□Q□□□□
Q□□□□□□□
□□Q□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□

第10种方法:
□□Q□□□□□
□□□□□□□Q
□□□Q□□□□
□□□□□□Q□
Q□□□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□Q□□□

第11种方法:
□□□□Q□□□
□□□□□□□Q
□□□Q□□□□
Q□□□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□
□□Q□□□□□

第12种方法:
□□□Q□□□□
□□□□□□□Q
Q□□□□□□□
□□□□Q□□□
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□
□□Q□□□□□

第13种方法:
□□□Q□□□□
□□□□□□□Q
□□□□Q□□□
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□

第14种方法:
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□
□□Q□□□□□

第15种方法:
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
Q□□□□□□□
□□Q□□□□□
□□□□Q□□□
□□□□□□Q□
□□□Q□□□□

第16种方法:
□□□Q□□□□
□□□□□□□Q
Q□□□□□□□
□□Q□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□
□□□□Q□□□

第17种方法:
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
Q□□□□□□□
□□Q□□□□□
□□□□Q□□□
□□□□□□Q□

第18种方法:
□□□□□□Q□
□□Q□□□□□
□□□□□□□Q
□Q□□□□□□
□□□□Q□□□
Q□□□□□□□
□□□□□Q□□
□□□Q□□□□

第19种方法:
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□□Q□□

第20种方法:
□□□Q□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□Q□□□

第21种方法:
Q□□□□□□□
□□□□□Q□□
□□□□□□□Q
□□Q□□□□□
□□□□□□Q□
□□□Q□□□□
□Q□□□□□□
□□□□Q□□□

第22种方法:
□□□□Q□□□
□□Q□□□□□
□□□□□□□Q
□□□Q□□□□
□□□□□□Q□
Q□□□□□□□
□□□□□Q□□
□Q□□□□□□

第23种方法:
□□□□Q□□□
Q□□□□□□□
□□□□□□□Q
□□□Q□□□□
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□Q□□

第24种方法:
□□□□Q□□□
□Q□□□□□□
□□□□□□□Q
Q□□□□□□□
□□□Q□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□Q□□

第25种方法:
□□Q□□□□□
□□□□Q□□□
□□□□□□□Q
□□□Q□□□□
Q□□□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□

第26种方法:
□□Q□□□□□
□□□□□Q□□
□□□□□□□Q
Q□□□□□□□
□□□□Q□□□
□□□□□□Q□
□Q□□□□□□
□□□Q□□□□

第27种方法:
□□□Q□□□□
□□□□□Q□□
□□□□□□□Q
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□
□Q□□□□□□

第28种方法:
□□Q□□□□□
□□□□□Q□□
□□□□□□□Q
Q□□□□□□□
□□□Q□□□□
□□□□□□Q□
□□□□Q□□□
□Q□□□□□□

第29种方法:
□□□□Q□□□
Q□□□□□□□
□□□□□□□Q
□□□□□Q□□
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□
□□□Q□□□□

第30种方法:
Q□□□□□□□
□□□□Q□□□
□□□□□□□Q
□□□□□Q□□
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□
□□□Q□□□□

第31种方法:
□Q□□□□□□
□□□□□Q□□
□□□□□□□Q
□□Q□□□□□
Q□□□□□□□
□□□Q□□□□
□□□□□□Q□
□□□□Q□□□

第32种方法:
□□Q□□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□

第33种方法:
□□□□□Q□□
□□Q□□□□□
□□□□Q□□□
□□□□□□□Q
Q□□□□□□□
□□□Q□□□□
□Q□□□□□□
□□□□□□Q□

第34种方法:
□□□□□Q□□
□□Q□□□□□
Q□□□□□□□
□□□□□□□Q
□□□□Q□□□
□Q□□□□□□
□□□Q□□□□
□□□□□□Q□

第35种方法:
□□□Q□□□□
□Q□□□□□□
□□□□Q□□□
□□□□□□□Q
□□□□□Q□□
Q□□□□□□□
□□Q□□□□□
□□□□□□Q□

第36种方法:
□□□□□□Q□
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
Q□□□□□□□
□□Q□□□□□
□□□□Q□□□

第37种方法:
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□□□□Q
□□□□□Q□□
□□□Q□□□□
□Q□□□□□□
□□□□Q□□□

第38种方法:
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□□□Q
□□□□Q□□□
Q□□□□□□□
□□□Q□□□□
□□□□□Q□□

第39种方法:
□□□Q□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□□□Q
□Q□□□□□□
□□□□Q□□□
Q□□□□□□□
□□□□□Q□□

第40种方法:
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
□□□Q□□□□
Q□□□□□□□
□□□□Q□□□

第41种方法:
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□
□□□□□Q□□
□□Q□□□□□

第42种方法:
□Q□□□□□□
□□□□□□Q□
□□□□Q□□□
□□□□□□□Q
Q□□□□□□□
□□□Q□□□□
□□□□□Q□□
□□Q□□□□□

第43种方法:
□□□Q□□□□
□□□□□□Q□
Q□□□□□□□
□□□□□□□Q
□□□□Q□□□
□Q□□□□□□
□□□□□Q□□
□□Q□□□□□

第44种方法:
□□Q□□□□□
□□□□Q□□□
□Q□□□□□□
□□□□□□□Q
Q□□□□□□□
□□□□□□Q□
□□□Q□□□□
□□□□□Q□□

第45种方法:
□□□Q□□□□
Q□□□□□□□
□□□□Q□□□
□□□□□□□Q
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□Q□□

第46种方法:
□□□□□Q□□
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□

第47种方法:
□□□□□Q□□
□□Q□□□□□
Q□□□□□□□
□□□□□□□Q
□□□Q□□□□
□Q□□□□□□
□□□□□□Q□
□□□□Q□□□

第48种方法:
□Q□□□□□□
□□□Q□□□□
□□□□□Q□□
□□□□□□□Q
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□

第49种方法:
□□Q□□□□□
□□□□Q□□□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
□□□Q□□□□
□□□□□□Q□
Q□□□□□□□

第50种方法:
□□□Q□□□□
Q□□□□□□□
□□□□Q□□□
□□□□□□□Q
□□□□□Q□□
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□

第51种方法:
□□□□Q□□□
□□Q□□□□□
Q□□□□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□
□□□□□□Q□

第52种方法:
□□□□Q□□□
□Q□□□□□□
□□□Q□□□□
□□□□□Q□□
□□□□□□□Q
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□

第53种方法:
□□□□□□Q□
□□□Q□□□□
□Q□□□□□□
□□□□Q□□□
□□□□□□□Q
Q□□□□□□□
□□Q□□□□□
□□□□□Q□□

第54种方法:
□□□□□□Q□
□Q□□□□□□
□□□Q□□□□
Q□□□□□□□
□□□□□□□Q
□□□□Q□□□
□□Q□□□□□
□□□□□Q□□

第55种方法:
□□□□□□Q□
□□Q□□□□□
Q□□□□□□□
□□□□□Q□□
□□□□□□□Q
□□□□Q□□□
□Q□□□□□□
□□□Q□□□□

第56种方法:
□□□□Q□□□
□□□□□□Q□
□Q□□□□□□
□□□Q□□□□
□□□□□□□Q
Q□□□□□□□
□□Q□□□□□
□□□□□Q□□

第57种方法:
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□Q□□
□□□□□□□Q
□□□□Q□□□
Q□□□□□□□
□□□Q□□□□

第58种方法:
Q□□□□□□□
□□□□□□Q□
□□□Q□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□□Q□□□
□□Q□□□□□

第59种方法:
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□□□□Q
□□□□□Q□□
□□□Q□□□□
□Q□□□□□□

第60种方法:
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□
□□□□□Q□□

第61种方法:
□□□□□Q□□
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□□□Q
□□□□Q□□□
Q□□□□□□□
□□□Q□□□□

第62种方法:
□□□□□Q□□
□□□Q□□□□
□□□□□□Q□
Q□□□□□□□
□□□□□□□Q
□Q□□□□□□
□□□□Q□□□
□□Q□□□□□

第63种方法:
□□□□□Q□□
Q□□□□□□□
□□□□Q□□□
□Q□□□□□□
□□□□□□□Q
□□Q□□□□□
□□□□□□Q□
□□□Q□□□□

第64种方法:
□□□□□Q□□
□□□Q□□□□
Q□□□□□□□
□□□□Q□□□
□□□□□□□Q
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□

第65种方法:
□□Q□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□Q□□□
□□□□□□□Q
Q□□□□□□□
□□□□□□Q□
□□□Q□□□□

第66种方法:
□□Q□□□□□
□□□□□Q□□
□□□Q□□□□
Q□□□□□□□
□□□□□□□Q
□□□□Q□□□
□□□□□□Q□
□Q□□□□□□

第67种方法:
□□Q□□□□□
□□□□□Q□□
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□

第68种方法:
□□□□Q□□□
Q□□□□□□□
□□□Q□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□

第69种方法:
□□□Q□□□□
□□□□□Q□□
Q□□□□□□□
□□□□Q□□□
□Q□□□□□□
□□□□□□□Q
□□Q□□□□□
□□□□□□Q□

第70种方法:
□□□□□□Q□
□□□□Q□□□
□□Q□□□□□
Q□□□□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□

第71种方法:
□□□□Q□□□
□□□□□□Q□
□□□Q□□□□
Q□□□□□□□
□□Q□□□□□
□□□□□□□Q
□□□□□Q□□
□Q□□□□□□

第72种方法:
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
□□Q□□□□□

第73种方法:
□□□□□Q□□
□□Q□□□□□
□□□□□□Q□
□□□Q□□□□
Q□□□□□□□
□□□□□□□Q
□Q□□□□□□
□□□□Q□□□

第74种方法:
□□□□□Q□□
□□Q□□□□□
□□□□□□Q□
□Q□□□□□□
□□□Q□□□□
□□□□□□□Q
Q□□□□□□□
□□□□Q□□□

第75种方法:
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□
Q□□□□□□□
□□□Q□□□□
□□□□□□□Q
□□□□Q□□□
□□Q□□□□□

第76种方法:
□□□Q□□□□
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□Q□□
□□□□□□□Q
Q□□□□□□□
□□□□Q□□□

第77种方法:
□□□Q□□□□
□Q□□□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□Q□□
□□□□□□□Q
□□□□Q□□□
Q□□□□□□□

第78种方法:
□Q□□□□□□
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□□□□Q
□□□□□Q□□
□□□Q□□□□

第79种方法:
□Q□□□□□□
□□□□Q□□□
□□□□□□Q□
□□□Q□□□□
Q□□□□□□□
□□□□□□□Q
□□□□□Q□□
□□Q□□□□□

第80种方法:
□□□Q□□□□
□Q□□□□□□
□□□□□□Q□
□□□□Q□□□
Q□□□□□□□
□□□□□□□Q
□□□□□Q□□
□□Q□□□□□

第81种方法:
□□□□□Q□□
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□□□□Q□□□
□□□□□□□Q
□Q□□□□□□
□□□Q□□□□

第82种方法:
□Q□□□□□□
□□□□□Q□□
Q□□□□□□□
□□□□□□Q□
□□□Q□□□□
□□□□□□□Q
□□Q□□□□□
□□□□Q□□□

第83种方法:
□□□□Q□□□
□□Q□□□□□
Q□□□□□□□
□□□□□□Q□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□
□□□Q□□□□

第84种方法:
□□□□Q□□□
□Q□□□□□□
□□□Q□□□□
□□□□□□Q□
□□Q□□□□□
□□□□□□□Q
□□□□□Q□□
Q□□□□□□□

第85种方法:
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□
□□Q□□□□□
Q□□□□□□□
□□□Q□□□□
□□□□□□□Q
□□□□Q□□□

第86种方法:
□□□□Q□□□
□□□□□□Q□
□Q□□□□□□
□□□□□Q□□
□□Q□□□□□
Q□□□□□□□
□□□□□□□Q
□□□Q□□□□

第87种方法:
□□□Q□□□□
□□□□□□Q□
□□□□Q□□□
□□Q□□□□□
Q□□□□□□□
□□□□□Q□□
□□□□□□□Q
□Q□□□□□□

第88种方法:
□□Q□□□□□
□□□□Q□□□
□□□□□□Q□
Q□□□□□□□
□□□Q□□□□
□Q□□□□□□
□□□□□□□Q
□□□□□Q□□

第89种方法:
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□
Q□□□□□□□
□□Q□□□□□
□□□□Q□□□
□□□□□□□Q
□□□Q□□□□

第90种方法:
□□Q□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□
Q□□□□□□□
□□□Q□□□□
□□□□□□□Q
□□□□Q□□□

第91种方法:
□□Q□□□□□
□□□□□Q□□
□Q□□□□□□
□□□□□□Q□
□□□□Q□□□
Q□□□□□□□
□□□□□□□Q
□□□Q□□□□

第92种方法:
□□□□Q□□□
□Q□□□□□□
□□□□□Q□□
Q□□□□□□□
□□□□□□Q□
□□□Q□□□□
□□□□□□□Q
□□Q□□□□□

Java实现八皇后问题,用数组递归算法,简单易懂

八皇后问题要将八个皇后放在棋盘上,任何两个皇后都不能互相攻击。即没有两个皇后是在同一行、同一列或者同一对角上。典型的八皇后问题,使用Java写的算法,算法虽比较简单,但难免会有新手会犯疏漏和错误,希望...
  • H_JinXian
  • H_JinXian
  • 2016年04月07日 19:43
  • 2493

C++简单实现八皇后问题

近来无聊,想着几年前用c#实现的八皇后,是参考网上的答案,如今过了几年,想试试有没进步,用c++简单地实现。 八皇后问题,是回溯算法的经典例子,它的规则要求是同一行同一列同一条斜线不能有两个皇后,不然...
  • xanxus46
  • xanxus46
  • 2014年03月21日 16:35
  • 6533

算法学习笔记之三:八皇后问题(递归、回溯)

(一)题记 从去年下半年开始找工作,大大小小也被“鄙”试、“面”试了n多回了。说实话只怪自己并未对常见的笔试题、面试题进行准备,导致败下阵来。一门学问要想学透学精是需要时间的,慢慢来吧…… 第一次听到...
  • zssureqh
  • zssureqh
  • 2014年03月12日 21:33
  • 31484

浅谈八皇后问题

八皇后问题经典有趣。我在这里介绍三种不同的思路,分别是回溯,穷举,位运算。代码也比较精简,欢迎大家讨论。...
  • jr19911118730
  • jr19911118730
  • 2015年03月08日 22:07
  • 409

八皇后问题优雅解法——位运算

古老的八皇后问题估计大家都不陌生。一个8✖️ 8的棋盘,放置八个皇后(Queen),每个皇后会攻击和自己在同一行(列),同一左(右)对角线上的其他皇后。如何放置这8个皇后,才能使得没有任何皇后会互相攻...
  • Dora_Bin
  • Dora_Bin
  • 2016年10月04日 14:31
  • 1328

【经典算法】八皇后问题C#版

八皇后问题是一个比较经典的算法题目,记得大二的时候,自己在寝室折腾出来的,现在把他放出来。 关于八皇后 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝...
  • u011669081
  • u011669081
  • 2016年05月26日 03:33
  • 1570

八皇后问题--转载

/** * 回溯法解N皇后问题 * 使用一个一维数组表示皇后的位置 * 其中数组的下标表示皇后所在的行 * 数组元素的值表示皇后所在的列 * 这样设计的棋盘,所有皇后必定不在同一行,于是行冲突就不存在...
  • Z_sea
  • Z_sea
  • 2018年01月01日 21:47
  • 18

算法总结——八皇后问题(三种解法)

目录(?)[+]问题描述 解题思路一 参考程序一解题思路二参考程序二解题思路三参考程序三实现中常见的问题问题描述 会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇...
  • sinat_37059404
  • sinat_37059404
  • 2017年07月19日 14:11
  • 675

java利用递归解决八皇后问题

问题简介: 要求在一个8*8的棋盘上放置8个皇后,使任意两个皇后都不同行不同列且不在同一条斜对角线上。采用递归和回溯的思想解决这一问题是较为直观的。一开始,棋盘上的任意格子都可落子,因此可任意选择第...
  • yange1025
  • yange1025
  • 2016年04月30日 00:06
  • 860

用C#语言实现八皇后问题

C#实现八皇后问题
  • u013303626
  • u013303626
  • 2016年07月09日 18:01
  • 1086
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:再谈八皇后问题
举报原因:
原因补充:

(最多只允许输入30个字)