elasticsearch小记之——query和filter的主要区别

本文深入探讨了电子商务网站中如何使用Filter和Query进行产品筛选和搜索,解释了它们之间的主要区别,即Filter作为快速筛选工具,而Query则通过打分机制实现更精确的搜索,并提供了关于性能考量的见解。

下面讲讲我一般使用的场景

  1. 我是先使用filter把不需要的过滤掉,例如现在有一个电子商务的网站,我要查询一个category的id为1下面的所有产品,那么我首先会使用filter把category id等于1的产品过滤出来,也就是查出来
  2. 对于上面的filter出来的结果我再这个category下面查询name为“五子弥勒”的产品,这个时候我就会使用query,为什么呢,因为可能有的产品的name完全match 这个“五子弥勒”的关键字,但是有的产品可能只会match其中的一个词汇,所以,如果我需要把有相似性的查出来,这个是query是具备这个功能的,query的本质不是筛选,而是查询。query他会给结果打分,然后按照分数进行一个排序,如果命中的比较多,分数自然就很高,那么就会排在前面。这里提到了一个打分的概念,个人认为这个打分主要还是看分词器对他的命中,然后给一个评估,关于分词器,我会在后面的博客中提到。

所以,这个时候,大家应该知道filterquery的主要区别了,另外关于性能的我在提一下,上面提到 filter不进行打分的,他只是一个筛选,对不感兴趣的直接筛选掉;而query需要打分,可以想象成是一个命中率的概念,是一个率,不过如果你不想看到打分,你可以通过参数去控制,结果也就没有排序了,但是实际上,对性能的提升不大,因为主要的性能不是放在排序上面,而是在匹配上面

<think>好的,我现在需要回答用户关于Elasticsearchqueryfilter区别的问题。首先,我要回忆一下自己之前学过的相关知识,并结合提供的引用内容来组织答案。 根据引用内容,queryfilter主要区别在于是否计算相关度分数是否缓存结果。用户提到引用[2]中说明,query会计算相关度并排序,而filter只过滤数据,不计算分数。同时,filter有自动缓存机制,可以提升性能,而query不行。此外,引用[4]也提到query用于搜索场景,注重相关性,而filter用于过滤场景,注重精确匹配。 接下来需要将这些点整理成结构清晰的回答,每个区别单独成段,并加上引用标识。例如,相关度计算、性能差异、缓存机制、应用场景等部分。同时要注意用户提到的系统级指令,如使用中文回答,数学表达式正确格式,生成相关问题等。 在生成相关问题部分,需要围绕区别、性能优化、应用场景、缓存机制等方面提问,确保问题有针对性且能帮助用户深入理解。同时,要确保所有引用都正确标注来源,如引用[1]、引用[2]等。 最后,检查回答是否符合格式要求,比如使用正确的LaTeX格式(虽然这个问题可能用不上数学表达式,但需要确认),结构是否清晰,引用是否正确,以及是否有生成的相关问题。同时,避免使用任何markdown格式,保持自然的中文表达。</think>### Elasticsearch query vs filter 区别 Elasticsearch 中 `query` `filter` 的核心差异体现在**相关性计算**、**性能优化****应用场景**上,具体如下: --- #### 1. **相关性计算与排序** - **query**: 会计算每个文档与搜索条件的相关度(通过评分机制,如 TF-IDF 或 BM25),并按照得分从高到低排序。适合需要匹配相关性的场景,例如全文搜索“包含 `run` 的文档”,结果可能包括 `running` 或 `sprint` 等近似词[^2][^4]。 - **filter**: 仅判断文档是否满足条件(如“状态是否为 `active`”),不计算相关度,结果无排序。适用于精确过滤,例如筛选“创建时间在 2023 年”的文档[^2]。 --- #### 2. **性能与缓存机制** - **query**: 由于需要计算分数且无法缓存结果,性能较低,尤其是复杂查询[^2]。 - **filter**: 自动缓存高频使用的过滤条件,后续相同查询可直接读取缓存,大幅提升速度。可通过 `_cache: true` 显式启用缓存[^1][^2]。 --- #### 3. **语法与使用场景** - **query**: 用于搜索场景,如 `match`, `term` 等查询语句,关注“匹配程度”。例如: ```json { "query": { "match": { "title": "apple" } } } ``` - **filter**: 用于过滤场景,常嵌套在 `bool` 查询中,关注“是否满足条件”。例如: ```json { "query": { "bool": { "filter": [ { "term": { "status": "published" } } ] } } } ``` 引用[3][^5]中的示例也体现了这种结构。 --- #### 4. **组合使用建议** - 在需要同时过滤搜索时,推荐将 `filter` 与 `query` 结合,例如通过 `bool` 查询: ```json { "query": { "bool": { "must": [ { "match": { "title": "apple" } } ], "filter": [ { "term": { "category": "tech" } } ] } } } ``` 这种组合既保证相关性,又利用缓存提升性能[^3]。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值