Leetcode_102_Binary Tree Level Order Traversal

二叉树层次遍历算法详解及代码实现
本文详细介绍了二叉树层次遍历的概念、思路和算法流程,并通过实例代码展示了如何使用队列实现层次遍历。文章旨在帮助读者理解并掌握二叉树层次遍历的相关知识。

本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/41929059


Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example:
Given binary tree {3,9,20,#,#,15,7},

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

思路:

(1)题意为给定一颗二叉树,按层次输出每层对应的值。

(2)本文主要运用队列来操作树中每层节点。为了避免每次从根节点开始遍历,在我们对地第m层进行访问时,只需知道m-1层节点信息即可,这样就无需每次都从根节点开始访问,从而可以提高效率。

(3)这里设置两个标记位first和last来记录当前层待访问的节点位置和当前层最后一个节点的下一个节点的位置。

(4)解题思路大致为:如果根节点不为空,将根节点加入当前队列,初始化标记位first为0,即为当前队列中待访问的第一个节点,初始化标记位last为1,即为当前队列中元素个数。如果first小于队列大小,即在队列中对应在first位置的节点存在,则进入循环准备遍历第一层元素,last指向队列中最后一个元素的下一个位置,如果first<last,说明该层还有元素未被访问,将first位置对应的节点存入临时存储每层节点的链表中,如果该位置的左右节点不为空,则分别将左右节点存入当前链表中,已经遍历完一个节点,此时first++,即指向下一个待遍历的节点,循环直到first==last,说明当前层节点全部遍历完,将临时链表存入待输出的队列中;然后接着遍历第二层,依次类推,直到遍历到最后一层最后一个节点时,此时last等于当前队列元素个数,跳出循环,返回结果。

(5)对于题目中的示例,下面给出其执行过程:

          A:将根节点3加入当前队列all中,初始化first=0,last=1

          B:由于first<all.size()=1,说明first所对应位置在all中存有节点,此时last执行all最后一个节点3所在位置0的下一个位置1

          C:由于first<last,当前层未遍历,取出first所对元素3存入临时链表level中,继续看该节点的下层孩子节点,即其左右节点是否为空

          D:不为空则将9和20加入队列,此时,first所指元素已遍历完,first指向下一个元素,first++,此时first=last,说明第一层遍历完了

          E:接着遍历第二层,第二层开始位置为1,即从节点9开始遍历,......

          F:这里需要注意的是:每遍历到一个节点,将其左右节点加入队列的顺序必须为先左后右,这样才能保证输出顺序的正确性。

(6)本文主要考察对队列的应用,特别是其“先进先出”的特性,能够保证每层都是按照从左到右的顺序输出。

(7)希望本文对你有所帮助。谢谢。


算法代码实现如下所示:

public static List<List<Integer>> levelOrder(TreeNode root) {
	List<List<Integer>> result = new LinkedList<List<Integer>>();
	//注意root为空时不能返回null
	if (root == null)
		return result;

	List<TreeNode> all = new LinkedList<TreeNode>();
	all.add(root);
	int first = 0; //当前待访问节点,初始为第一个节点,即根节点
	int last = 1; //当前链表中元素个数,初始只有一个
	while (first < all.size()) {  //如果待访问节点存在于链表
		last = all.size();      //下一行访问开始,定位last为当前行最后一个节点下一个节点所在位置
		List<Integer> level = new LinkedList<Integer>();
		while (first < last) {    //如果first==last表示该行所有节点都被访问到了,跳出循环
			level.add(all.get(first).val);
			if (all.get(first).left != null) {
				all.add(all.get(first).left);
			}
			if (all.get(first).right != null) {
				all.add(all.get(first).right);
			}
			first++; //每访问完一个节点就指向下一个节点
		}
		result.add(level);
	}
	return result;
}




你提供的这段代码是用于实现**二叉树序遍历(Level Order Traversal)**的 C++ 实现。它使用了**广度优先搜索(BFS)**的思想,但并没有使用标准的队列(`queue`),而是通过两个 `vector` 来模拟级的转换,是一种**简洁高效**的实现方式。 下面我们从 **语法、逻辑、设计思想、VS 兼容性、潜在问题、完整运行示例** 等多个角度进行详细分析。 --- ## ✅ 一、代码结构分析 ```cpp class Solution { public: vector<vector<int>> levelOrder(TreeNode* root) { if (root == nullptr) { return {}; } vector<vector<int>> ans; vector<TreeNode*> cur = {root}; while (cur.size()) { vector<TreeNode*> nxt; vector<int> vals; for (auto node : cur) { vals.push_back(node->val); if (node->left) nxt.push_back(node->left); if (node->right) nxt.push_back(node->right); } cur = move(nxt); ans.emplace_back(vals); } return ans; } }; ``` --- ## 🧪 二、Visual Studio 兼容性说明 这段代码在 **Visual Studio(VS)完整版中是完全合法的 C++ 代码**,只要满足以下前提条件: ### ✅ 必须满足的条件: 1. **包含头文件**: - `#include <vector>`:用于 `vector`; - `#include <iostream>`(可选):如果你在 `main()` 中打印结果。 2. **定义 `TreeNode` 类型**: - 否则会报错 `identifier not found` 3. **使用 C++11 或更高标准**: - `for (auto node : cur)` 是 C++11 的范围 for; - `move(nxt)` 是 `<utility>` 中的 `std::move`,也需要 C++11 支持。 --- ## 🧩 三、完整 VS 可运行代码 下面是一个完整的 Visual Studio 可运行示例(包含 `main()` 函数): ```cpp #include <iostream> #include <vector> #include <utility> // for std::move using namespace std; // 定义树节点结构 struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode() : val(0), left(nullptr), right(nullptr) {} TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} }; class Solution { public: vector<vector<int>> levelOrder(TreeNode* root) { if (root == nullptr) { return {}; } vector<vector<int>> ans; vector<TreeNode*> cur = {root}; while (!cur.empty()) { vector<TreeNode*> nxt; vector<int> vals; for (auto node : cur) { vals.push_back(node->val); if (node->left) nxt.push_back(node->left); if (node->right) nxt.push_back(node->right); } cur = move(nxt); ans.emplace_back(vals); } return ans; } }; // 测试主函数 int main() { // 构建测试树 // 3 // / \ // 9 20 // / \ // 15 7 TreeNode* root = new TreeNode(3); root->left = new TreeNode(9); root->right = new TreeNode(20); root->right->left = new TreeNode(15); root->right->right = new TreeNode(7); Solution sol; vector<vector<int>> result = sol.levelOrder(root); cout << "序遍历结果:" << endl; for (const auto& level : result) { for (int val : level) { cout << val << " "; } cout << endl; } // 释放内存 delete root->right->right; delete root->right->left; delete root->right; delete root->left; delete root; return 0; } ``` --- ## 🔍 四、逐行逻辑解释 | 代码 | 说明 | |------|------| | `vector<vector<int>> ans;` | 用于存储最终结果,每一个 `vector<int>` | | `vector<TreeNode*> cur = {root};` | 当前的节点列表,初始为根节点 | | `while (cur.size())` | 只要当前还有节点就继续循环 | | `vector<int> vals;` | 存储当前所有节点的值 | | `for (auto node : cur)` | 遍历当前每个节点 | | `vals.push_back(node->val);` | 收集当前节点值 | | `nxt.push_back(node->left);` | 收集下一节点 | | `cur = move(nxt);` | 将下一节点移动到当前,避免拷贝 | | `ans.emplace_back(vals);` | 将当前的值加入结果 | --- ## 🧠 五、设计思想与优势 ### 1. **避免使用队列,使用 vector 模拟级遍历** - 用 `vector<TreeNode*> cur` 表示当前; - 用 `vector<TreeNode*> nxt` 表示下一; - 每次遍历完当前后,将 `nxt` 移动赋值给 `cur`。 ### 2. **使用 `std::move` 提高效率** - `cur = move(nxt);` 避免了拷贝构造; - 对于大型树结构,这能显著提升性能。 ### 3. **每单独收集值,便于组织结果** - `vals` 收集当前的值; - `ans.emplace_back(vals)` 构造最终结果。 --- ## ⚠️ 六、潜在问题与注意事项 | 问题 | 原因 | 建议 | |------|------|------| | 缺少 `TreeNode` 定义 | 未定义节点结构 | 自定义 `TreeNode` | | 内存泄漏 | 没有 `delete` 创建的节点 | 测试后记得释放内存 | | 不使用 `std::move` | 会触发拷贝构造 | 使用 `cur = move(nxt)` 提高性能 | | 缺少头文件 | 如 `<vector>`、`<utility>` | 添加必要头文件 | --- ## ✅ 七、总结一句话: > 这段代码使用 `vector` 和 `std::move` 实现了一种简洁高效的序遍历方式,适用于 Visual Studio 环境,只需要补充 `TreeNode` 定义和内存释放即可完整运行。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值