AI架构师易筋
码龄12年
  • 775,999
    被访问
  • 974
    原创
  • 1,092
    排名
  • 721
    粉丝
  • 46
    铁粉
关注
提问 私信

个人简介:工作10+年,AI方向架构师,曾经任职阿里巴巴,世界500强HSBC。擅长架构、深度学习、Transformer、CNN、NLP、算法、数据结构、设计模式、iOS、Java Spring Boot, Spring Cloud。易筋乃阿里巴巴花名。

  • 目前就职: 阿里巴巴
  • 加入CSDN时间: 2010-06-01
博客简介:

AI架构师易筋

博客描述:
Life is a game, so level up!
查看详细资料
  • 7
    领奖
    总分 4,711 当月 10
个人成就
  • 博客专家认证
  • 获得278次点赞
  • 内容获得319次评论
  • 获得1,137次收藏
创作历程
  • 139篇
    2022年
  • 456篇
    2021年
  • 304篇
    2020年
  • 106篇
    2019年
  • 7篇
    2018年
成就勋章
TA的专栏
  • 架构师
    82篇
  • 自动驾驶
    83篇
  • 李沐动手学深度学习
    74篇
  • AI & 机器学习
    69篇
  • 产品经理训练营
    30篇
  • 容器技术Docker K8s
    55篇
  • 阿里云云计算
    53篇
  • TensorFlow by Google
    32篇
  • CNN RNN神经网络
    27篇
  • 易实战Sprint Boot 2.1
    40篇
  • iOS
    122篇
  • 算法
    203篇
  • 服务端
    37篇
  • 机器学习杂文
    27篇
  • 生活黑客
    37篇
  • 工具类
    44篇
  • 互联网
    23篇
兴趣领域 设置
  • 人工智能
    深度学习自动驾驶transformer视觉检测
若有帮助 | 请作者喝 [可乐☕️] ^_^

邮箱:zgpeace@gmail.com

商务合作VX:zgpeace (请注明来意)

github zgpeace

stackoverflow zgpeace

感谢打赏,微信二维码:

感谢打赏,祝您生活愉快

感谢打赏,支付宝二维码:

感谢打赏,祝您生活愉快
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

与AI结对编程式是什么体验 Copilot vs AlphaCode, Codex, GPT-3

Deepmind 的 AlphaCode 通过在前 54% 的人类编码人员中进行测试而成为头条新闻。GitHub 的 Copilot 能否跟上 AlphaCode 的自动化编程?剑桥大学进行的一项研究表明,开发人员的大部分时间都花在了调试上。这项耗时的任务每年花费软件行业约 3000 亿美元。Deepmind 最新的基于人工智能的代码开发和分析工具通过自动化开发人员的日常和耗时的任务来降低此类成本。与建议代码的GitHub Copilot相比,AlphaCode能够分析算法并生成具有竞争力的复杂程序,不
原创
发布博客 2022.06.29 ·
162 阅读 ·
0 点赞 ·
0 评论

算法: 编辑距离使得单词相同 72. Edit Distance

算法: 编辑距离使得单词相同 72. Edit Distance
原创
发布博客 2022.06.28 ·
27 阅读 ·
0 点赞 ·
0 评论

实战AI生成LeetCode算法答案 应届生开挂利器 GitHub Copilot开启AI自动生成代码的时代

花更少的时间创建样板和重复的代码模式,而将更多时间花在重要的事情上:构建出色的软件。写一条评论来描述您想要的逻辑,GitHub Copilot 将立即建议代码来实现该解决方案。GitHub Copilot 直接集成到您的编辑器中,包括 Neovim、JetBrains IDE、Visual Studio 和 Visual Studio Code,并且速度足够快,可以在您键入时使用。无论您是使用新语言或框架,还是只是学习编码,GitHub Copilot 都可以帮助您找到自己的方式。解决错误,或学习如何使
原创
发布博客 2022.06.24 ·
119 阅读 ·
0 点赞 ·
0 评论

算法: 求和377. Combination Sum IV

Given an array of distinct integers nums and a target integer target, return the number of possible combinations that add up to target.The test cases are generated so that the answer can fit in a 32-bit integer.Example 1:Note that different sequences are
原创
发布博客 2022.06.20 ·
23 阅读 ·
0 点赞 ·
0 评论

SimSwap 高保真人脸交换的高效框架 以及 deepfake辨别图片或者视频真假 dalle-mini文字生成图片

1. SimSwap 高保真人脸交换的高效框架简单交换(SimSwap),旨在实现广义和高保真人脸交换。与之前的方法要么缺乏泛化到任意身份的能力,要么无法保留面部表情和注视方向等属性,我们的框架能够将任意源人脸的身份转换为任意目标人脸,同时保留人脸的属性。目标面。我们通过以下两种方式克服了上述缺陷。首先,我们提出了 ID 注入模块 (IIM),它在特征级别将源人脸的身份信息传输到目标人脸。通过使用这个模块,我们将特定身份的人脸交换算法的架构扩展到任意人脸交换的框架。第二,我们提出了弱特征匹配损失,它有效地
原创
发布博客 2022.05.29 ·
429 阅读 ·
0 点赞 ·
1 评论

翻译: 顶级人工智能会议 CVPR NeurIPS AAAI 等

对全球众多不同的 AI 专家聚会进行概览可能非常具有挑战性,从小型聚会到有数千名与会者的国际会议。因此,我们根据科学相关性收集了以下最重要的会议。相关性由Google Scholar根据作者H-indices为每个会议的出版物计算的 h5-index 表示。您将在下面找到以下部分的介绍:顶级计算机视觉会议顶级通用机器学习会议特定主题的顶级人工智能会议1. 2022 年顶级计算机视觉会议1.1 CVPR · IEEE/CVF 计算机视觉与模式识别会议19.-24。2022 年 6 月
原创
发布博客 2022.05.29 ·
225 阅读 ·
0 点赞 ·
0 评论

深度学习结课总结和进阶学习 优化算法 动手学深度学习v2

1. 优化算法2. 课程总结和进阶学习感谢沐神参考https://www.bilibili.com/video/BV1bP4y1p7Gq/?spm_id_from=autoNext
原创
发布博客 2022.05.21 ·
65 阅读 ·
0 点赞 ·
0 评论

BERT微调 自然语言推理数据集 BERT微调代码实现 动手学深度学习v2

1. BERT微调2. 自然语言推理数据集3. BERT微调代码4. Q&A神经网络可以跨语言,跨领域。比如自然语言,视觉都在用Transformer。5. 目标检测竞赛总结参考https://www.bilibili.com/video/BV15L4y1v7ts/?spm_id_from=autoNext...
原创
发布博客 2022.05.21 ·
140 阅读 ·
0 点赞 ·
0 评论

BERT预训练 动手学深度学习v2

1. BERT预训练 Transformer 编码器2. BERT 代码3. BERT预训练数据代码4. BERT预训练代码5. Q&A参考https://www.bilibili.com/video/BV1yU4y1E7Ns/?spm_id_from=autoNext
原创
发布博客 2022.05.20 ·
90 阅读 ·
0 点赞 ·
0 评论

自注意力 self attention Transformer 多头注意力代码 Transformer 代码 动手学深度学习v2

1. 自注意力 self attention2. 自注意力 self attention 代码实现3. Transformer4. 多头注意力代码5. Transformer 代码6.Q&Atransformer 特别适合应用到芯片上。参考https://www.bilibili.com/video/BV19o4y1m7mo?p=1...
原创
发布博客 2022.05.16 ·
126 阅读 ·
0 点赞 ·
0 评论

Attention使用注意力机制的seq2seq 动手学深度学习v2

1. Attention使用注意力机制的seq2seq2. Attention使用注意力机制的seq2seq 代码实现3. Q&Aattention在搜索的时候,是在当前句子搜索。一般都是在decoder加入注意力机制?不一定的,BERT就是在encoder中加入attention。图像attention,就是从图片抽取patch,也就一小块一小块,作为attention。参考https://www.bilibili.com/vide
原创
发布博客 2022.05.15 ·
267 阅读 ·
0 点赞 ·
0 评论

注意力机制 attention 注意力分数 动手学深度学习v2

1. 注意力机制 attention2. 注意力机制 attention 代码实现3. 注意力分数4. 注意力打分函数实现5. Q&Amasked_softmax() 把填充padding的值,求softmax的时候,padding位置的值都设置为0.参考https://www.bilibili.com/video/BV1264y1i7R1?p=1...
原创
发布博客 2022.05.15 ·
117 阅读 ·
0 点赞 ·
0 评论

序列到序列学习 seq2seq 束搜索 beam search 动手学深度学习v2

1. 序列到序列学习 seq2seq2. 代码实现3. 束搜索 beam search4. Q&A现在seq2seq 都用transformer了。但是过段时间, 有可能又会发现可能RNN/LSTM会更好。深度神经网络是一波又一波的。参考https://www.bilibili.com/video/BV16g411L7FG?p=1...
原创
发布博客 2022.05.14 ·
53 阅读 ·
0 点赞 ·
0 评论

机器翻译数据集 编码器-解码器架构以及实现 动手学深度学习v2

1. 机器翻译数据集2. 编码器-解码器架构3. 编码器-解码器 代码实现参考https://www.bilibili.com/video/BV1H64y1s7TH/
原创
发布博客 2022.05.12 ·
46 阅读 ·
0 点赞 ·
0 评论

长短期记忆网络 LSTM 深层循环神经网络 Deep RNN 双向循环神经网络 Bidirectional RNN 动手学深度学习v2

1. 长短期记忆网络 LSTM2. 长短期记忆网络 LSTM 代码实现3. 深层循环神经网络 Deep RNN4. 深层循环神经网络 Deep RNN 代码实现5. Q&ANLP挺好找工作的,因为文本比图片工作的数量比较多。比如,抽取财报的关键信息。深层RNN,每层都需要一个初始hidden state.参考https://www.bilibili.com/video/BV1JU4y1H7PC?p=1...
原创
发布博客 2022.05.11 ·
184 阅读 ·
0 点赞 ·
0 评论

门控循环单元 GRU 动手学深度学习v2

1. 门控循环单元 GRU不是每个元素都很重要,比如猫重复了很多次,只有第一次看到猫才比较重要,其它的猫可以被忘记掉。老鼠只出现一次,但也是很重要的。2. 代码实现简洁实现3. Q&AGRU相比RNN多了很多参数,但是GRU比RNN更稳定,也就是不会导致梯度爆炸。RNN在长文本的时候效果不好,所以用GRU,LSTM效果会比较好,能做到100左右。超过100可以用BERT。参考https://www.bilibili.com/video/BV
原创
发布博客 2022.05.10 ·
51 阅读 ·
0 点赞 ·
0 评论

循环神经网络 RNN 从零开始实现 动手学深度学习v2 pytorch

1. 循环神经网络 RNN2. Q&AGPT3, BERT 都是基于Transformer模型的改进,目前也是最火的。voice和image融合算法,用多模态模型。比如自动驾驶领域的运用。参考https://www.bilibili.com/video/BV1D64y1z7CA/...
原创
发布博客 2022.05.08 ·
222 阅读 ·
0 点赞 ·
0 评论

语言模型language models 动手学深度学习v2

1. 语言模型 language models猴子随机打出来莎士比亚的作品,时间大概要多久呢? – 宇宙爆炸都打不出来。2. 代码实现3. Q&Asequence sample (token 是word),一般32位效果会比较好。要考虑模型的复杂度,和产品综合考虑。参考https://www.bilibili.com/video/BV1ZX4y1F7K3?p=1...
原创
发布博客 2022.05.08 ·
183 阅读 ·
0 点赞 ·
0 评论

序列模型 sequence model 文本预处理 动手学深度学习v2

1. 序列模型 sequence model2. 代码实现3. Q&ARNN 可以认为跟隐马尔科夫假设上建模的。later variable潜变量 是不存在, hidden variable隐变量是存在,只是看不到。MLP可以记住了过去数据的模式,然后去用这个模式去画出未来的趋势。如果仅仅是记住数据,泛化性会不好,导致过拟合。预测波音飞机的零件的坏的概率,有几百个参数。这里的困难点是在,要收集到足够多的负类。否则,都是正类数据,预测出
原创
发布博客 2022.05.06 ·
403 阅读 ·
0 点赞 ·
0 评论

芯片产业未来的格局 算力的时代的NVIDIA GPU是巨头,新的巨头崛起的底层逻辑

1. 如何判断新的巨头在哪里?产业选择:必须有大算力的产业,比如AI平台。技术优势:要有算法,数据带来的巨大优势,软硬件结合。协作能力:必须是一个开放的平台,不断演化。异构计算(英语:Heterogeneous computing),又译异质运算,主要是指使用不同类型指令集和体系架构的计算单元组成系统的计算方式。常见的计算单元类别包括CPU、GPU等协处理器、DSP、ASIC、FPGA等。异构计算近年来得到更多关注,主要是因为通过提升CPU时钟频率和内核数量而提高计算能力的传统方式遇到了散热
原创
发布博客 2022.05.05 ·
105 阅读 ·
0 点赞 ·
0 评论
加载更多