题目:
A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
For example, given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
先考虑所有点的row值,如上图为0, 0, 2,则中值为0, 所有点距中值的距离和为(0 - 0) + (0 - 0) + (2 - 0) = 2
同理,考虑所有点的cols值,上图为,0, 2, 4,中值为2,所有点距中值的距离和为(2- 0) + (2 - 2) + (4 - 2) = 4,
所以总距离为2 + 4 = 6。
C++版:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
if(grid.size() == 0)
return 0;
vector<int> rows, cols;
for(int i = 0; i < grid.size(); i++) {
for(int j = 0; j < grid[0].size(); j++) {
if(grid[i][j] == 1)
rows.push_back(i);
}
}
for(int j = 0; j < grid[0].size(); j++) {
for(int i = 0; i < grid.size(); i++) {
if(grid[i][j] == 1)
cols.push_back(j);
}
}
int distance = 0;
int mid = rows.size() / 2;
for(int i = 0; i < rows.size(); i++)
distance += abs(rows[i] - rows[mid]);
mid = cols.size() / 2;
for(int i = 0; i < cols.size(); i++)
distance += abs(cols[i] - cols[mid]);
return distance;
}
};
本文介绍了一种算法,用于帮助一组人选择一个会议地点,以最小化总旅行距离。通过考虑所有人的位置,算法计算出最优的会合点。包括一维和二维情况的解决方法,以及C++实现。
4648

被折叠的 条评论
为什么被折叠?



